• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prevention of bacterial growth in platelet products via inclusion of iron chelators

Ng-Muk-Yuen, Jennifer Diane 05 1900 (has links)
Bacterial infection is a leading cause of morbidity and mortality arising from platelet transfusions (1, 2). Storage of platelet products at room temperature (20 to 24ºC) provides ideal conditions for bacterial proliferation (1, 3-6). Furthermore, platelets are stored in plasma containing bioavailable iron that bacteria require to survive (7). Thus we hypothesize that the inclusion of iron chelators will bind and remove iron, thereby inhibiting bacterial growth in both culture medium and platelet concentrates. Additionally, we hypothesize that residual red blood cells (RBCs) in platelet units may contribute bioavailable iron that promotes bacterial growth. To test these hypotheses, we first assessed growth of Staphylococcus epidermidis in culture medium after treatment with the iron chelators deferoxamine (DFO) or phytic acid. DFO significantly inhibited bacterial growth in a dose dependent manner (p < 0.009). Conversely, phytate only inhibited bacterial growth at concentrations ≥ 100 mM (p < 0.001); at ≤ 5 mM, phytate supplied S. epidermidis with additional nutrients and significantly promoted growth (p < 0.001). Subsequently, we monitored the change in RBCs over time. Hemolysis, methemoglobin, and iron levels all significantly increased over the 7-day storage period (p < 0.001) releasing bioavailable iron. Indeed, we found that S. epidermidis growth in iron-poor medium drastically increased with the addition of RBCs, thus supporting our second hypothesis. Surprisingly, the inclusion of DFO in minimal medium did not demonstrate a bacteriostatic effect in the presence of RBCs. The inhibitory effect of DFO was likely overcome by iron released from the elevated methemoglobin levels arising from the direct interaction of DFO with hemoglobin. Previous studies demonstrate that methemoglobin releases iron more quickly than normal hemoglobin (8). Lastly, we evaluated the effect of DFO on microbial growth in platelet concentrates using the BacT/ALERT system. The presence of DFO significantly inhibited S. epidermidis growth in buffy coat platelets in a dose dependent manner (p < 0.001). With these findings, the inclusion of iron chelators is a promising approach to preventing transfusion-transmitted bacterial infection and providing patients with a safer platelet product.
2

Prevention of bacterial growth in platelet products via inclusion of iron chelators

Ng-Muk-Yuen, Jennifer Diane 05 1900 (has links)
Bacterial infection is a leading cause of morbidity and mortality arising from platelet transfusions (1, 2). Storage of platelet products at room temperature (20 to 24ºC) provides ideal conditions for bacterial proliferation (1, 3-6). Furthermore, platelets are stored in plasma containing bioavailable iron that bacteria require to survive (7). Thus we hypothesize that the inclusion of iron chelators will bind and remove iron, thereby inhibiting bacterial growth in both culture medium and platelet concentrates. Additionally, we hypothesize that residual red blood cells (RBCs) in platelet units may contribute bioavailable iron that promotes bacterial growth. To test these hypotheses, we first assessed growth of Staphylococcus epidermidis in culture medium after treatment with the iron chelators deferoxamine (DFO) or phytic acid. DFO significantly inhibited bacterial growth in a dose dependent manner (p < 0.009). Conversely, phytate only inhibited bacterial growth at concentrations ≥ 100 mM (p < 0.001); at ≤ 5 mM, phytate supplied S. epidermidis with additional nutrients and significantly promoted growth (p < 0.001). Subsequently, we monitored the change in RBCs over time. Hemolysis, methemoglobin, and iron levels all significantly increased over the 7-day storage period (p < 0.001) releasing bioavailable iron. Indeed, we found that S. epidermidis growth in iron-poor medium drastically increased with the addition of RBCs, thus supporting our second hypothesis. Surprisingly, the inclusion of DFO in minimal medium did not demonstrate a bacteriostatic effect in the presence of RBCs. The inhibitory effect of DFO was likely overcome by iron released from the elevated methemoglobin levels arising from the direct interaction of DFO with hemoglobin. Previous studies demonstrate that methemoglobin releases iron more quickly than normal hemoglobin (8). Lastly, we evaluated the effect of DFO on microbial growth in platelet concentrates using the BacT/ALERT system. The presence of DFO significantly inhibited S. epidermidis growth in buffy coat platelets in a dose dependent manner (p < 0.001). With these findings, the inclusion of iron chelators is a promising approach to preventing transfusion-transmitted bacterial infection and providing patients with a safer platelet product.
3

Prevention of bacterial growth in platelet products via inclusion of iron chelators

Ng-Muk-Yuen, Jennifer Diane 05 1900 (has links)
Bacterial infection is a leading cause of morbidity and mortality arising from platelet transfusions (1, 2). Storage of platelet products at room temperature (20 to 24ºC) provides ideal conditions for bacterial proliferation (1, 3-6). Furthermore, platelets are stored in plasma containing bioavailable iron that bacteria require to survive (7). Thus we hypothesize that the inclusion of iron chelators will bind and remove iron, thereby inhibiting bacterial growth in both culture medium and platelet concentrates. Additionally, we hypothesize that residual red blood cells (RBCs) in platelet units may contribute bioavailable iron that promotes bacterial growth. To test these hypotheses, we first assessed growth of Staphylococcus epidermidis in culture medium after treatment with the iron chelators deferoxamine (DFO) or phytic acid. DFO significantly inhibited bacterial growth in a dose dependent manner (p < 0.009). Conversely, phytate only inhibited bacterial growth at concentrations ≥ 100 mM (p < 0.001); at ≤ 5 mM, phytate supplied S. epidermidis with additional nutrients and significantly promoted growth (p < 0.001). Subsequently, we monitored the change in RBCs over time. Hemolysis, methemoglobin, and iron levels all significantly increased over the 7-day storage period (p < 0.001) releasing bioavailable iron. Indeed, we found that S. epidermidis growth in iron-poor medium drastically increased with the addition of RBCs, thus supporting our second hypothesis. Surprisingly, the inclusion of DFO in minimal medium did not demonstrate a bacteriostatic effect in the presence of RBCs. The inhibitory effect of DFO was likely overcome by iron released from the elevated methemoglobin levels arising from the direct interaction of DFO with hemoglobin. Previous studies demonstrate that methemoglobin releases iron more quickly than normal hemoglobin (8). Lastly, we evaluated the effect of DFO on microbial growth in platelet concentrates using the BacT/ALERT system. The presence of DFO significantly inhibited S. epidermidis growth in buffy coat platelets in a dose dependent manner (p < 0.001). With these findings, the inclusion of iron chelators is a promising approach to preventing transfusion-transmitted bacterial infection and providing patients with a safer platelet product. / Medicine, Faculty of / Pathology and Laboratory Medicine, Department of / Graduate
4

Chelatační vlastnosti experimentálně zkoušených chelátorů železa / Chelation ability of experimentally used iron chelators

Morkusová, Michaela January 2013 (has links)
v angličtině Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Michela Morkusová Supervisor: Přemysl Mladěnka, Pharm.D., Ph.D. Title of diploma thesis: Chelation ability of experimentally used iron chelators Iron is a vital element, playing many important functions in the body. Its presence in too low or too high quantities is harmful. The body has no excretion route for iron, and in certain circumstances, excess iron can accumulate in body tissues. Iron is present in the body in excess particularly in individuals undergoing frequent blood transfusions or having genetically based diseases associated with iron overload (hemochromatosis). Iron excess is medically treated by administration of iron chelators. Such substances can find wider therapeutic use as well, e.g. in individuals with acute myocardial infarction or with tumours. This Thesis was aimed at determining the stoichiometric ratio in the complexes of two experimental chelators, salicylaldehyde isonicotinoyl hydrazone (SIH) and ethylenediaminetetraacetic acid (EDTA), with iron(II) and iron(III) ions at four different pathophysiologically significant pH levels (4.5, 5.5, 6.8 and 7.5). Spectrophotometry was used as the analytical method. In the processing stage, various new...
5

Intérêt thérapeutique de la privation en fer dans les cancers du sein / Iron deprivation for breast cancer treatment

Tury, Sandrine 15 December 2017 (has links)
La dérégulation du métabolisme des cellules tumorales est un hallmark du cancer clairement établi. Pour assurer leur taux de proliferation élevé, les cellules cancéreuses adaptent leur métabolisme, ce qui leur permet de répondre à leurs nouveaux besoins énergétiques. Dans ce contexte, les cellules tumorales présentent des besoins en fer augmentés ainsi que de multiples perturbations du métabolisme du fer, ce qui les rend plus sensibles à la privation en fer. Cette vulnérabilité pourrait ainsi faire l’objet d’un ciblage thérapeutique. Dans les cancers du sein, de nouvelles approches thérapeutiques sont très attendues en particulier pour les cancers triple-négatifs qui développent fréquemment des résistances à la chimiothérapie et qui souffrent d'un manque de cibles thérapeutiques spécifiques. L’activité antitumorale des chélateurs de fer tels que le déférasirox (DFX) évalués en monothérapie a déjà été démontrée dans différents types de cancers mais ne semble pas être suffisamment efficace pour éradiquer les tumeurs. Dans cette étude, nous avons démontré que le DFX agit en synergie avec des molécules de chimiothérapies conventionnelles telles que la doxorubicine, le cisplatine et le carboplatine pour inhiber la prolifération cellulaire et induire l’apoptose et l’autophagie de lignées cellulaires mammaires de sous-type triple-négatif. De plus, la combinaison du DFX avec la doxorubicine et le cyclophosphamide permet de retarder voire d’éviter les récidives dans des xénogreffes de tumeurs mammaires triple-négatives (PDX) sans augmenter les effets secondaires de la chimiothérapie seule ni impacter les réserves en fer globales des souris. Au niveau moléculaire, nous avons montré que la synergie antitumorale du DFX et de la doxorubicine implique une inhibition des voies PI3K et NF-κB. Par ailleurs, étant donné que les patients présentant un cancer triple-négatif avec de faibles réserves en fer tumorales présentent un bon pronostic, nous pensons que la privation en fer au moyen de chélateurs de fer pourrait constituer une approche d’autant plus efficace pour augmenter l’efficacité des chimiothérapies conventionnelles dans le traitement de ces cancers. / Deregulation of tumor cell metabolism is a clearly established cancer hallmark. To ensure their high proliferation rate, cancer cells adapt their metabolism to meet their new energy needs. In this context, tumor cells display increased iron needs as well as multiple disturbances in their iron metabolism, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple negative tumors (TNBC) which frequently develop chemotherapies resistance and suffer from a lack of targeted therapies. The anticancer activity of iron chelators such as deferasirox (DFX) assessed in monotherapy has been demonstrated in different types of cancers. However, iron chelators do not appear to be effective enough to eradicate cancer. In this work, we demonstrated that DFX synergizes with standard chemotherapeutic agents such as doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in TNBC cell lines. Moreover, the combination of DFX with doxorubicin and cyclophosphamide allowed to delay or avoid recurrences in breast cancer patient-derived xenografts (PDX) without increasing the side-effects of chemotherapies alone or altering global iron storage of mice. At the molecular level, we showed that the antitumor synergy of DFX and doxorubicin involves a down-regulation of PI3K and NF-κB pathways. Furthermore, as TNBC patients with low iron storage in their tumor present a better prognosis, we thought that iron deprivation mediated by iron chelators may all the more increase the effectiveness of conventional chemotherapies for TNBC treatment.
6

Construction and Characterization of Cyanobacterial Bioreporters to Assess Nutrient (P, Fe) Availability in Marine Environments

Boyanapalli, Ramakrishna Bharadwaj 03 May 2006 (has links)
No description available.
7

Caracterização do processo de descoloração de corante reativo diazo por basidiomicetos tropicais. / Characterization of reactive disazo dye decolorization by tropical basidiomycetes.

Nara Ballaminut 01 February 2017 (has links)
Corantes reativos têxteis podem ser degradados por basidiomicetos, por meio de enzimas oxidativas e hidrolíticas, e compostos de baixa massa molar. Foi avaliada a descoloração de CI Reactive Blue 222 por Peniophora cinerea, Pleurotus ostreatus e Trametes villosa, selecionando condições ótimas para o processo e diferentes vias metabólicas foram observadas. A degradação foi confirmada por cromatografia de camada delgada. Foi sugerido que lacases de P. ostreatus oxidam o grupo cromóforo azo, ligado ao fenol, nas primeiras 24 horas, conjuntamente hidroxilização não enzimática. Lacases de P. cinerea oxidam Mn+2 e quinona, possibilitando a via de Fenton e hidroxilizando assim a molécula do corante, paulatinamente, a partir das ligações mais vulneráveis. T. villosa faz uso prioritariamente da via de Fenton, hidroxilizando gradativamente a molécula do corante. Dessa forma, embora a maioria de estudos associem a produção enzimática à descoloração, a participação dos compostos de baixa massa molar não pode ser negligenciada. / Reactive textile dyes can be degraded by basidiomycetes, by means of hydrolytic and oxidative enzymes, and low molecular weight compounds. Was evaluated the CI Reactive Blue 222 decolorization by Peniophora cinerea, Pleurotus ostreatus, and Trametes villosa, selecting optimal conditions for the process and different metabolic pathways were observed. The degradation was confirmed by thin layer chromatography. It was suggested that P. ostreatus laccases oxidize azo chromophore group attached to the phenol, within 24 hours, together nonenzymatic hydroxylizating. P. cinerea laccases oxidize Mn+2 and quinone, enabling via Fenton and so hidroxylizing the dye molecule, gradually, from the most vulnerable links. T. villosa uses primarily via Fenton, gradually hidroxylizing the dye molecule. Thus, although most studies have linked enzyme production with the decolorization, the share of low molecular weight compounds can not be neglected.
8

Caracterização do processo de descoloração de corante reativo diazo por basidiomicetos tropicais. / Characterization of reactive disazo dye decolorization by tropical basidiomycetes.

Ballaminut, Nara 01 February 2017 (has links)
Corantes reativos têxteis podem ser degradados por basidiomicetos, por meio de enzimas oxidativas e hidrolíticas, e compostos de baixa massa molar. Foi avaliada a descoloração de CI Reactive Blue 222 por Peniophora cinerea, Pleurotus ostreatus e Trametes villosa, selecionando condições ótimas para o processo e diferentes vias metabólicas foram observadas. A degradação foi confirmada por cromatografia de camada delgada. Foi sugerido que lacases de P. ostreatus oxidam o grupo cromóforo azo, ligado ao fenol, nas primeiras 24 horas, conjuntamente hidroxilização não enzimática. Lacases de P. cinerea oxidam Mn+2 e quinona, possibilitando a via de Fenton e hidroxilizando assim a molécula do corante, paulatinamente, a partir das ligações mais vulneráveis. T. villosa faz uso prioritariamente da via de Fenton, hidroxilizando gradativamente a molécula do corante. Dessa forma, embora a maioria de estudos associem a produção enzimática à descoloração, a participação dos compostos de baixa massa molar não pode ser negligenciada. / Reactive textile dyes can be degraded by basidiomycetes, by means of hydrolytic and oxidative enzymes, and low molecular weight compounds. Was evaluated the CI Reactive Blue 222 decolorization by Peniophora cinerea, Pleurotus ostreatus, and Trametes villosa, selecting optimal conditions for the process and different metabolic pathways were observed. The degradation was confirmed by thin layer chromatography. It was suggested that P. ostreatus laccases oxidize azo chromophore group attached to the phenol, within 24 hours, together nonenzymatic hydroxylizating. P. cinerea laccases oxidize Mn+2 and quinone, enabling via Fenton and so hidroxylizing the dye molecule, gradually, from the most vulnerable links. T. villosa uses primarily via Fenton, gradually hidroxylizing the dye molecule. Thus, although most studies have linked enzyme production with the decolorization, the share of low molecular weight compounds can not be neglected.

Page generated in 0.0733 seconds