• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 10
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Effect of iron supplementation on endurance performance in iron deficient trained males and females

Sinclair, Lisa M. January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references. Also available on the Internet.
32

Relationship of the microstructure of gray cast iron and eutectometer cooling curves

Hussein, Laila el-Menawati, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1970. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
33

Explorations of iron-iron hydrogenase active site models by experiment and theory

Tye, Jesse Wayne 15 May 2009 (has links)
This dissertation describes computational and experimental studies of synthetic complexes that model the active site of the iron-iron hydrogenase [FeFe]H2ase enzyme. Simple dinuclear iron dithiolate complexes act as functional models of the ironiron hydrogenase enzyme by catalyzing isotopic exchange in D2/H2O mixtures. Density Functional Theory (DFT) calculations and new experiments have been performed that suggest reasonable mechanistic explanations for this reactivity. Evidence for the existence of an acetone derivative of the di-iron complex, as suggested by theory, is presented. Bis-phosphine substituted dinuclear iron dithiolate complexes react with the electrophilic species, H+ and Et+ (Et+ = CH3CH2 +) with differing regioselectivity; H+ reacts to form a 3c-2eâ Fe-H-Fe bond, while Et+ reacts to form a new C-S bond. The instability of a bridging ethyl complex is attributed to the inability of the ethyl group, in contrast to a hydride, to form a stable 3c-2eâ bond with the two iron centers. Gas-phase density functional theory calculations are used to predict the solutionphase infrared spectra for a series of CO and CN-containing dinuclear iron complexes dithiolate. It is shown that simple linear scaling of the computed C-O and C-N stretching frequencies yields accurate predictions of the experimentally determined ν(CO) and ν(CN) values. An N-heterocyclic carbene containing [FeFe]H2ase model complex, whose X-ray structure displays an apical carbene, is shown to undergo an unexpected simultaneous two-electron reduction. DFT shows, in addition to a one-electron Fe-Fe reduction, that the aryl-substituted N-heterocyclic carbene can accept a second electron more readily than the Fe-Fe manifold. The juxtaposition of these two one-electron reductions resembles the [FeFe]H2ase active site with an FeFe di-iron unit joined to the electroactive 4Fe4S cluster. Simple synthetic di-iron dithiolate complexes synthesized to date fail to reproduce the precise orientation of the diatomic ligands about the iron centers that is observed in the molecular structure of the reduced form of the enzyme active site. Herein, DFT computations are used for the rational design of synthetic complexes as accurate structural models of the reduced form of the enzyme active site.
34

Degradation, metabolism and relaxation properties of iron oxide particles for magnetic resonance imaging /

Briley Saebo, Karen, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.
35

Nanoclusters of doped ZnO and core-shell iron /

Antony, Jiji. January 1900 (has links)
Thesis (Ph. D., Physics)--University of Idaho, August 2006. / Major professor: You Qiang. Includes bibliographical references (leaves 119-137). Also available online (PDF file) by subscription or by purchasing the individual file.
36

Ratlarda demir yüklenmesi ile oluşturulan oksidatif stresin önlenmesinde Kafeik Asit Fenetil Ester'in etkinliğinin araştırılması /

Cüre, Erkan. Alanoğlu, Güçhan. January 2007 (has links) (PDF)
Tez (Tıpta Uzmanlık) - Süleyman Demirel Üniversitesi, Tıp Fakültesi, İç Hastalıkları Anabilim Dalı, 2007. / Bibliyografya var.
37

Eisen und Eisenproteine in Neuronen mit perineuronalem Netz

Reinert, Anja 09 January 2009 (has links)
In der vorliegenden Dissertation wurden Neurone untersucht, die von einer speziellen Form der extrazellulären Matrix, dem perineuronalen Netz (PN), umgeben sind. Neurone mit einem PN zeichnen sich durch eine geringe Vulnerabilität bei neurodegenerativen Erkrankungen aus. Da das PN mit hoher Affinität Eisen bindet, war zu klären, ob das PN den Eisenhaushalt der Neurone beeinflusst und diese mit einer protektiven Eigenschaft gegenüber Eisen-induzierten oxidativen Stress ausstattet. Es wurde die Eisenkonzentration und der Gehalt an Eisentransport- und Eisenspeicherproteinen von Neuronen mit PN und Neuronen ohne PN in der Ratte untersucht. Dabei kamen quantitative Methoden wie die ortsaufgelöste Ionenstrahlmikroskopie und die Objektträger-basierte Laser Scanning Zytometrie sowie Western Blot Analysen und quantitative Real-Time-PCR zum Einsatz. Die Untersuchungen zeigen, dass Neurone, die mit einem PN umgeben sind, eine höhere Konzentration an Eisen sowie Eisentransport- und Eisenspeicherproteinen besitzen als Neurone ohne ein PN. Das PN könnte so den Eisenhaushalt der Neurone beeinflussen und diese mit einer protektiven Eigenschaft gegenüber Eisen-induziertem oxidativen Stress ausstatten.
38

Oxidants and antioxidants in cardiovascular disease

Ekblom, Kim, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
39

Synthesis and mechanical properties of iron-filled carbon nanotubes

Weißker, Uhland 16 October 2013 (has links)
Carbon forms the basis of a variety of compounds. The allotropic forms of carbon include graphene, fullerenes, graphite, carbon nanotubes and diamond. All these structures possess unique physical and chemical properties. This work focusses on the usage of carbon nanotubes (CNT), especially iron-filled CNT. An industrial application of CNT requires the understanding of the growth mechanism and the control of the synthesis process parameters. Regarding iron-filled CNT the shell formation as well as the filling process has to be understood in order to control the CNT morphology and distribution and dimension of the iron filling. The thesis involves two topics - synthesis of CNT and characterization of their mechanical properties. Chapter 2 of the present work deals with the synthesis of iron-filled CNT. In this thesis all experiments and the discussion about the growth process were conducted with respect to the demands of magnetic force microscopy probes. The experimental work was focused on the temperature profile of the furnace, the aluminum layer of the substrate, the precursor mass flow and their impact on the morphology of in-situ iron-filled CNT. By selecting appropriate process parameters for the temperature, sample position, gas flow and by controlling the precursor mass flow, CNT with a continuous filling of several microns in length were created. Existing growth models have been analyzed and controversially discussed in order to explain the formation of typical morphologies of in-situ filled CNT. In this work a modified growth model for the formation of in-situ filled CNT has been suggested. The combined-growth-mode model is capable to explain the experimental results. Experiments which were conducted with respect to the assumptions of this model, especially the role of the precursor mass flow, resulted in the formation of long and continuous iron nanowires encapsulated inside multi-walled CNT. The modified growth model and the synthesis results showed, that besides the complexity of the parameter interaction, a control of the morphology of in-situ iron-filled CNT is possible. In chapter 3 the measurements of mechanical properties of in-situ iron-filled CNT are presented. Two different experimental methods and setups were established, whereby one enabled a static bending measurement inside a TEM and another a dynamical excitation of flexural vibration of CNT inside SEM. For the first time mechanical properties and in particular the effective elastic modulus Eb of in-situ iron-filled CNT were determined based on the Euler-Bernoulli beam model (EBM). This continuum mechanic model can be applied to describe the mechanical properties of CNT and especially MWCNT in consideration of the restriction that CNT represent a macro molecular structure built of nested rolled-up graphene layers. For evaluation and determination of the elastic modulus the envelope of the resonant vibrating state was evaluated by fitting the EBM to the experimental data. The experiments also showed, that at the nanoscale the properties of sample attachment have to be taken into account. Thus, instead of a rigid boundary condition a torsion spring like behavior possessing a finite stiffness was used to model an one side clamped CNT. The extended data evaluation considering the elastic boundary conditions resulted in an average elastic modulus of Eb = 0.41 ± 0.11 TPa. The low standard deviation gives evidence for the homogeneity of the grown material. To some extend a correlation between the formation process, the morphology and the mechanical properties has been discussed. The obtained results prove the usability of this material as free standing tips for raster scanning microscopy and especially magnetic force microscopy. The developed methods provide the basis for further investigations of the CNT and the understanding of mechanical behavior in greater detail.

Page generated in 0.0506 seconds