11 |
Simulace elektroporačního děje při terapii okluze stentu / Simulation of electroporation process in stent oclussion therapyHemzal, Martin January 2021 (has links)
This masteral thesis describes phenomenon of electroporation and it’s use to deal with occluded self-expandable metalic stent. Thesis briefly summarizes theory of electroporation, currently used medical treatments of occluded stents. The next part of the thesis is dedicated to current state of mathematical simulations of electroporation. The core of the thesis are simulations of electroporation effects on tissue of occluded metal stents.
|
12 |
Engineered Platforms for the Development of Electroporation-based Tumor TherapiesWasson, Elisa Marie 22 January 2020 (has links)
Cancer is a complex and dynamic disease that is difficult to treat due to its heterogeneous nature at multiple scales. Standard therapies such as surgery, radiation, and chemotherapy often fail, therefore superior therapies must be developed. Electroporation-based therapies offer an alternative to standard treatments, utilizing pulsed electric fields to permeabilize cell membranes to either enhance drug delivery (electrochemotherapy) or induce cancer cell death (irreversible electroporation). Electroporation treatments show promise in the clinic, however, are limited in the size of tumors that they can safely treat without increasing the applied voltage to an extent that induces thermal damage or muscle contractions in patients. A method to increase ablation size safely is needed. To make this advancement and to advance other cancer treatments as well, better in vitro tumor models are needed. Heterogeneity not only makes cancer difficult to treat, but also difficult to recapitulate in vitro. This dissertation addresses the complementary need to develop both better cancer therapies and more physiologically relevant in vitro tumor models. My results demonstrate that by using a calcium adjuvant with irreversible electroporation treatment, ablation size can be increased without using a higher applied voltage. Additional mechanistic studies identified signaling pathways that were differentially dysregulated under calcium and no calcium conditions, impacting cell death. Finally, I have successfully encapsulated cells in fibrin microgels which may enable the creation of more physiologically relevant and complex 3D in vitro and ex-vivo platforms to investigate IRE as well as other tumor therapies. / Doctor of Philosophy / Cancer is a complex and dynamic disease. Heterogeneity exists at the single cell, tumor, and patient levels making it difficult to establish a unified target for therapy. Standard therapies such as surgery, radiation, and chemotherapy often fail for this reason, therefore superior therapies must be developed. Electroporation-based therapies offer an alternative to standard treatments, utilizing pulsed electric fields to permeabilize cell membranes to either enhance drug delivery (electrochemotherapy) or induce cancer cell death (irreversible electroporation). Electroporation treatments show promise in the clinic, however, are limited in the size of tumors that they can safely treat without increasing the applied voltage to an extent that induces thermal damage or muscle contractions in patients. A method to increase ablation size safely is needed. To make this advancement and to advance other cancer treatments as well, better tumor models are needed. Many of the same challenges in treating cancer serve as challenges in creating physiologically relevant tumor models. In this dissertation, I have developed a simplified platform to test whether using a calcium additive with irreversible electroporation therapies enhances ablation size. My results demonstrate that by using a calcium additive with irreversible electroporation treatment, ablation size can be increased without using a higher applied voltage. In addition, the biological pathways responsible for cell death in irreversible electroporation treatment with and without calcium were studied. Finally, I have successfully encapsulated cells in fibrin microgels that can be used to create better tumor models that encompass the heterogeneity of tumors found in the body.
|
13 |
Exploring Interactions Between Malignant Brain Cancer Cells and the Tumor Microenvironment Following High-Frequency Irreversible ElectroporationMurphy, Kelsey Rose 30 July 2024 (has links)
High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation therapeutic that applies bipolar, high-frequency pulsed electric fields to tumors, triggering the formation of irreversible membrane pores and to induce tumor cell death. H-FIRE has demonstrated pre-clinical and clinical utility as a therapeutic for brain tumors, including gliomas. H-FIRE has been shown to induce precise, uniform ablation within the tumor tissue, as well as local changes to the tumor microenvironment and systemic changes to the immune landscape. Namely, disruption of the peritumoral blood-brain barrier (BBB) following H-FIRE ablation of brain tumors, and infiltration and activation of the innate immune system are clinically observed following H-FIRE tumor ablation. Such effects persist long after death of the treated tumor, and therefore an understanding of the mechanisms underlying these local and systemic changes are critical for the development of H-FIRE. Using in vitro models of glioma and lung carcinoma-derived brain metastases, we investigate the interactions between cancer cells that have been ablated with H-FIRE and the brain tumor microenvironments. Specifically, we demonstrate that H-FIRE-treated cancer cells can recover treatment-induced damage and proliferative capacity after treatment with specific electric field doses, while higher doses inhibit such recovery. This suggests that after H-FIRE ablation of brain tumors, tumor cells can still secrete factors to trigger alterations in their local and systemic environments. We then specifically investigate the role of tumor-derived extracellular vesicles (TDEVs) in mediating these changes, namely pBBB disruption and changes in innate immunity. We find that, following H-FIRE ablation of brain cancer cells, treated cells immediately release TDEVs that disrupt the blood-brain barrier (BBB) endothelium in vitro, and are uniquely internalized by cerebral endothelial cells in vitro, despite reduced release of TDEVs after H-FIRE. We further demonstrate that H-FIRE significantly alters the proteomic payloads of TDEVs. When TDEVs released by sham- and H-FIRE-treated glioma cells are delivered to healthy rats, only TDEVs released by H-FIRE-ablated cells are retained in the brain, suggesting changes to TDEV organotropism after H-FIRE ablation of glioma. Further, once retained in the brain, these post-H-FIRE TDEVs cluster near cerebral endothelial cells, similarly to in vitro. Although the TDEVs released by H-FIRE ablated glioma cells do not disrupt the BBB in vivo, Iba1+ cells were increased in the brains of rats that received TDEVs released by H-FIRE-ablated glioma cells. Together, these data suggest that H-FIRE immediately alters the secretion and proteome of TDEVs, facilitating changes in TDEV organotropism and cellular tropism and immune cell recruitment to the tumor microenvironment. Together, this research indicates mechanisms by which tumor cells continue to modulate their local and systemic environments via the action of TDEVs, which is critical information for the continued development of H-FIRE and its optimization with adjuvant therapeutics for the treatment of malignant brain tumors. / Doctor of Philosophy / All cells secrete extracellular vesicles, which are packets of information that function as communication highways between cells. In cancer, tumor-derived extracellular vesicles (TDEVs) reprogram local and distant cells to support tumor growth. However, they have also been shown to change local and systemic functions, such as blood vessel function and immune response, after tumors are treated with therapeutics. Therefore, a full understanding of the role of TDEVs in how tumors communicate with the body after cancer treatment is necessary when developing new anti-cancer therapeutics. Here, in developing high-frequency irreversible electroporation (H-FIRE), a novel anti-tumor therapeutic for the treatment of malignant brain tumors, we explore how TDEVs released by brain cancer cells treated with H-FIRE interact with various cell types and structures in the body, and how these interactions may affect the response to treatment. Using a glioma model of primary brain cancer, and a lung carcinoma model of brain metastases, we first explore how tumor cells may be able to recover from damage after treatment with H-FIRE. We discover that brain cancer cells treated with specific doses of H-FIRE recover cell damage and continue to proliferate, but cells treated with higher doses of H-FIRE cannot recover these functions. The fact that tumor cells may be able to recover after H-FIRE suggests that cancer cells may still secrete factors, such as TDEVs, that interact with cells in the microenvironment after tumor treatment. We investigated the role of TDEVs released by brain cancer cells treated with H-FIRE to determine whether they cause changes in surrounding cells and structures in the brain cancer microenvironment. We determined that brain cancer cells treated with H-FIRE release TDEVs that carry proteins different from those carried by TDEVs routinely released by untreated cells. We further found that these TDEVs disrupt the blood-brain barrier (BBB) endothelium in vitro, and are uniquely internalized by cells of the endothelium. When these TDEVs were administered to the brains of healthy rats, they were retained in the brain, clustered near the endothelium, and recruited immune cells from circulation into the brain. Conversely, TDEVs that were routinely released from the brain cancer cells, in the absence of H-FIRE treatment, exhibited none of these functions. Taken together, these results show that H-FIRE changes TDEVs in numerous ways: after H-FIRE, the TDEVs may gravitate toward particular organs and cell types, and recruit immune cells. All of these changes can impact the overall therapeutic response after H-FIRE, and may also be specifically optimized and targeted with additional therapeutics to make H-FIRE more effective for brain cancer.
|
14 |
Utilizing the Immunomodulatory Effects of Electroporation for Treating Brain TumorsAlinezhadbalalami, Nastaran 31 May 2022 (has links)
Brain tumors are among the most devastating types of solid tumors to treat. Standard of care for glioblastoma (GBMs), the most aggressive form of primary brain tumors, has failed to improve the current survival rates in the past decades. Despite many other solid tumors, recent advances in cancer immunotherapies have also shown disappointing outcomes in GBMs. The heterogenous nature of GBMs, the immunosuppressive tumor microenvironment and the restrictive role of blood brain barrier (BBB) are some of the main challenges faced for treating GBMs.
Electroporation-based treatments have demonstrated promising results, treating preclinical models of GBMs. It has been shown that low and high frequency irreversible electroporation treatments shift the immunosuppressive tumor microenvironment and reversibly open large areas of blood brain barrier (BBB). In this dissertation, in vitro cell culture models are utilized to study electroporation-based treatments for achieving a more optimized treatment for glioblastoma. We are proposing to utilize the immunomodulatory effects of electroporation treatments to improve the outcomes of immunotherapies in the brain. / Doctor of Philosophy / Despite the current advancements in treating solid tumors, brain tumors remain among the most difficult cancers to treat. The special structure of the brain as an organ as well as tumor complexity can lead to treatment failure. It is also known that infiltration of the immune cells within the tumor mass is limited due to the tumor's immunosuppressive nature. Hence, the use of newly advancing immunotherapy techniques is limited in the brain.
Local treatments have become one of the most promising tools against brain tumors. Such treatments include methods that use excessive heating of the tissue to kill the tumors. Relying on heat for tissue destruction could damage the critical structures near the tumor and will reduce the favorable immune response after the treatment. A new treatment modality known as electroporation has been introduced for non-thermal treatment of brain tumors. Due to its non-thermal nature, electroporation treatments will allow for sparing of critical structures and can lead to a more robust immune response comparing to thermal treatment modalities. In this dissertation, we utilize electroporation-based treatments to try to overcome some of the challenges associated with treating brain tumors such as tumor heterogeneity and immune suppression.
|
15 |
Advancements in the Treatment of Malignant Gliomas and Other Intracranial Disorders With Electroporation-Based TherapiesLorenzo, Melvin Florencio 19 April 2021 (has links)
The most common and aggressive malignant brain tumor, glioblastoma (GBM), demonstrates on average a 5-year survival rate of only 6.8%. Difficulties arising in the treatment of GBM include the inability of large molecular agents to permeate through the blood-brain barrier (BBB); migration of highly invasive GBM cells beyond the solid tumor margin; and gross, macroscopic intratumor heterogeneity. These characteristics complicate treatment of GBM with standard of care, resulting in abysmal prognosis. Electroporation-based therapies have emerged as attractive alternates to standard of care, demonstrating favorable outcomes in a variety of tumors. Notably, irreversible electroporation (IRE) has been used for BBB disruption and nonthermal ablation of intracranial tumor tissues. Despite promising results, IRE can cause unintended muscle contractions and is susceptible to electrical heterogeneities. Second generation High-frequency IRE (H-FIRE) utilizes bursts of bipolar pulsed electric fields on the order of the cell charging time constant (~1 μs) to ablate tissue while reducing nerve excitation, muscle contraction, and is far less prone to differences in electrical heterogeneities.
Throughout my dissertation, I discuss investigations of H-FIRE for the treatment of malignant gliomas and other intracranial disorders. To advance the versatility, usability, and understanding of H-FIRE for intracranial applications, my PhD thesis focuses on: (1) characterizing H-FIRE-mediated BBB disruption effects in an in vivo healthy rodent model; (2) the creation of a novel, real-time impedance spectroscopy technique (Fourier Analysis SpecTroscopy, FAST) using waveforms compatible with existing H-FIRE pulse generators; (3) development of FAST as an in situ technique to monitor ablation growth and to determine patient-specific ablation endpoints; (4) conducting a preliminary efficacy study of H-FIRE ablation in an orthotopic F98 rodent glioma model; and (5) establishing the feasibility of MRI-guided H-FIRE for the ablation malignant gliomas in a spontaneous canine glioma model. The culmination of this thesis advances our understanding of H-FIRE in intracranial tissues, as well as develops a novel, intraoperative impedance spectroscopy technique towards determining patient-specific ablation endpoints for intracranial H-FIRE procedures. / Doctor of Philosophy / The most aggressive malignant brain tumor, glioblastoma (GBM), demonstrates on average a 5-year survival rate of only 6.8%. Difficulties arising in the treatment of GBM include the inability of chemotherapy agents to diffuse into brain tumor tissue as these molecular are unable to pass the so-called blood-brain barrier (BBB). This tumor tissue also presents with cells with the propensity to invade healthy tissue, to the point where diagnostic scans are unable to capture this migration. These characteristics complicate treatment of GBM with standard of care, resulting in abysmal prognosis. Electroporation-based therapies have emerged as attractive alternates to standard of care, demonstrating favorable outcomes in a variety of tumors. For instance, irreversible electroporation (IRE) has been used to successfully treat tumors in the prostate, liver, kidney, and pancreas. Second generation High-frequency IRE (H-FIRE) may possess even greater antitumor qualities and this is the focus of my dissertation.
Throughout my dissertation, I discuss investigations of H-FIRE with applications to treat malignant gliomas and other intracranial disorders. My PhD thesis focuses on: (1) characterizing H-FIRE effects for enhanced drug delivery to the brain; (2) the creation of a new, real-time electrical impedance spectroscopy technique (Fourier Analysis SpecTroscopy, FAST) using waveforms compatible with existing H-FIRE pulse generators; (3) development of FAST as a technique to determine H-FIRE treatment endpoints; (4) conducting a preliminary efficacy study of H-FIRE to ablate rodent glioma tumors; and (5) establishing the feasibility of MRI-guided H-FIRE for the ablation malignant gliomas in a spontaneous canine glioma model. The culmination of this thesis advances our understanding of H-FIRE in intracranial tissues, as well as develops a new impedance spectroscopy technique to be used in determining patient-specific ablation endpoints for intracranial H-FIRE procedures.
|
16 |
Novel Approaches in Pancreatic Cancer Treatment: Bridging Mechanics, Cells, and ImmunityImran, Khan Mohammad 04 January 2024 (has links)
The heterogeneity of pancreatic cancer renders many available general therapies ineffective holding the five-year survival rate close to 10% for decades. Surgical resection eligibility, resistance to chemotherapy and limited efficacy of immunotherapy emphasize the dire need for diverse and innovative treatments to combat this challenging disease. This study evaluates co-therapy strategies that combine non-thermal, minimally invasive ablation technology and targeted drug delivery to enhance treatment efficacy.
Our research begins by uncovering the multifaceted potential of Irreversible Electroporation (IRE), a cutting-edge non-thermal tumor ablation technique. This study demonstrates IRE-mediated ability to trigger programmed necrotic cell death, induce cell cycle arrest, and modulate immune cell populations within the tumor microenvironment. This transformation from a pro-tumor state to a proinflammatory milieu, enriched with cytotoxic T lymphocytes and neutrophils. IRE-induced proinflammation in the tumor site renders immunologically "cold" tumor into immunologically "hot" tumor and holds significant promise of improving treatment efficacy. Notably, IRE-treated mice exhibited an extended period of progression-free survival, implying clinical potential. The transient nature of these effects suggests potential mechanisms of tumor recurrence highlighting the need for further studies to maximize the efficacy of IRE. Our mechanistic studies evaluated the IFN-STAT1-PD-L1 feedback loop as a possible reason for pancreatic tumor recurrence. Our data also suggest a stronger IFN-PD-L1 feedback loop compared to mammary, osteosarcoma and glioblastoma tumors rendering pancreatic cancer immunologically "cold".
This study also investigates the use of histotripsy (a non-thermal, noninvasive, nonionizing ultrasound-guided ablation modality) to treat pancreatic cancer utilizing a novel immunocompromised swine model. We successfully generated human orthotopic pancreatic tumors in the immune deficient pigs, which allowed for consequent investigation of clinical challenges presented by histotripsy. While rigorous clinical studies are indispensable for validation, the promise of histotripsy offers new hope for patients.
In parallel, we used our immunocompromised swine model of orthotopic pancreatic cancer to investigate the SonoTran® system, which employs ultrasound-activated oscillating particles to enhance drug delivery within hard-to-reach tumors. Our study demonstrates that SonoTran® significantly enhances the intratumoral penetrance of therapeutic agents, including commonly used chemotherapy drugs like paclitaxel and gemcitabine. Additionally, SonoTran® improved delivery of the anti-epidermal growth factor (EGFR) monoclonal antibody, cetuximab- which is frequently used in cancer immunotherapy. Together, our findings address challenges in the delivery of a range of therapeutics while simultaneously exposing challenges like off-target damage.
In conclusion, this study presents a multifaceted approach to confront the complex characteristics of pancreatic cancer. Given the variations in patient response and the complexity of the disease, it is clear that a singular solution is unlikely. Our research, which combines IRE, histotripsy, and SonoTran®, to interrogate a promising array of tools to tackle different challenges to provide tailored treatments. In the ever-evolving landscape of pancreatic cancer therapy, this research opens new avenues to investigate deeper into molecular mechanisms, co-therapy treatment options, future preclinical and clinical studies which eventually encourage the potential for improved patient outcomes. / Doctor of Philosophy / Pancreatic cancer is a formidable disease, known for its late-stage diagnosis and limited treatment options with a poor 5-year survival rate of ~10%. However, a promising frontier in the battle against this lethal disease has emerged through combining mechanical, cell based and immunotherapies to attack the cancer from multiple angles at once. In my PhD research, I explored novel approaches to transform the landscape of pancreatic cancer treatment.
We began by investigating Irreversible Electroporation (IRE), a non-thermal method to ablate tumors. Beyond its known function of reducing tumor size, IRE initiated programmed necrotic cell death, halted tumor cell division, and triggered changes in the immune landscape within the tumor. In response to IRE treatment, the immune environment shifted from pro-tumor to proinflammatory state, showing potential for clinical use. Mice treated with IRE experienced extended cancer progression-free survival temporarily, followed by eventual relapse. During relapse, we found that immune cells reverted back to their original, pre- IRE treated state. This observation logically implies combining IRE and immune checkpoint inhibitors aimed towards maintaining the IRE-altered immunological environment.
Next, we developed and used novel pig models that closely resemble human pancreatic cancer patients to test histotripsy, a first phase toward making histotripsy as a non-invasive treatment approach for pancreatic cancer. Use of orthotopic tumor in a large animal model and clinical device allowed us to expose some challenges of ultrasound guidance of histotripsy. Notably, the treatment results in partial ablation and a reduction in stroma materials, which play a role in the tumor's resistance to commonly used treatments. While rigorous clinical studies are needed for validation, this approach offers hope in the quest for innovative pancreatic cancer treatment.
Another promising approach we investigated involves SonoTran® particles, ultrasound-activated oscillating particles that can increase drug absorption in a targeted fashion. Our study demonstrated increased concentrations of commonly used therapeutic agents within tumors through SonoTran®-facilitated delivery, providing an effective means to overcome drug delivery issues within pancreatic tumors.
There is no one size fits all treatment to address the complexity of pancreatic cancer. The future of treatment lies in the integration of IRE, histotripsy and SonoTran® into clinical practice. In summary, this PhD research identified promising novel technologies and combinations of treatments for pancreatic cancer, reaffirming the importance of exploring innovative solutions to combat pancreatic cancer. The dynamic nature of the pancreatic tumor microenvironment underscores the importance of further research to extend the positive impacts of these treatments and improve tumor debulking.
|
17 |
Improvements in Pulse Parameter Selection for Electroporation-Based TherapiesAycock, Kenneth N. 30 March 2023 (has links)
Irreversible electroporation (IRE) is a non-thermal tissue ablation modality in which electrical pulses are used to generate targeted disruption of cellular membranes. Clinically, IRE is administered by inserting one or more needles within or around a region of interest, then applying a series of short, high amplitude pulsed electric fields (PEFs). The treatment effect is dictated by the local field magnitude, which is quite high near the electrodes but dissipates exponentially. When cells are exposed to fields of sufficient strength, nanoscale "pores" form in the membrane, allowing ions and macromolecules to rapidly travel into and out of the cell. If enough pores are generated for a substantial amount of time, cell homeostasis is disrupted beyond recovery and cells eventually die. Due to this unique non-thermal mechanism, IRE generates targeted cell death without injury to extracellular proteins, preserving tissue integrity. Thus, IRE can be used to treat tumors precariously positioned near major vessels, ducts, and nerves. Since its introduction in the late 2000s, IRE has been used successfully to treat thousands of patients with focal, unresectable malignancies of the pancreas, prostate, liver, and kidney. It has also been used to decellularize tissue and is gaining attention as a cardiac ablation technique.
Though IRE opened the door to treating previously inoperable tumors, it is not without limitation. One drawback of IRE is that pulse delivery results in intense muscle contractions, which can be painful for patients and causes electrodes to move during treatment. To prevent contractions in the clinic, patients must undergo general anesthesia and temporary pharmacological paralysis. To alleviate these concerns, high-frequency irreversible electroporation (H-FIRE) was introduced. H-FIRE improves upon IRE by substituting the long (~100 µs) monopolar pulses with bursts of short (~1 µs) bipolar pulses. These pulse waveforms substantially reduce the extent of muscle excitation and electrochemical effects. Within a burst, each pulse is separated from its neighboring pulses by a short delay, generally between 1 and 5 µs. Since its introduction, H-FIRE burst waveforms have generally been constructed simply by choosing the duration of constitutive pulses within the burst, with little attention given to this delay. This is quite reasonable, as it has been well documented that pulse duration plays a critical role in determining ablation size. In this dissertation, we explore the role of these latent periods within burst waveforms as well as their interaction with other pulse parameters. Our central hypothesis is that tuning the latent periods will allow for improved ablation size with reduced muscle contractions over traditional waveforms.
After gaining a simple understanding of how pulse width and delay interact in vitro, we demonstrate theoretically that careful tuning of the delay within (interphase) and between (interpulse) bipolar pulses in a burst can substantially reduce nerve excitation. We then analyze how pulse duration, polarity, and delays affect the lethality of burst waveforms toward determining the most optimal parameters from a clinical perspective. Knowing that even the most ideal waveform will require slightly increased voltages over what is currently used clinically, we compare the clinical efficacy of two engineered thermal mitigation strategies to determine what probe design modifications will be needed to successfully translate H-FIRE to the clinic while maintaining large, non-thermal ablation volumes. Finally, we translate these findings in two studies. First, we demonstrate that burst waveforms with an improved delay structure allow for enhanced safety and larger ablation volumes in vivo. And finally, we examine the efficacy of H-FIRE in spontaneous canine liver tumors while also comparing the ablative effect of H-FIRE in tumor and non-neoplastic tissue in a veterinary clinical setting. / Doctor of Philosophy / Cancer is soon to become the most common cause of death in the United States. In 2023, approximately 2 million new cases of cancer will be diagnosed, leading to roughly 650 thousand lost lives. Interestingly, about half of newly diagnosed cancers are caught in the early stages before the disease has spread throughout the body. With effective local intervention, these patients could potentially be cured of their malignancy. Surgical removal of the tumor is the gold standard, but it is often not possible due to tumor location, patient comorbidities, or organ health status. In some instances, focal thermal ablation with radiofrequency or microwave energy can be performed when resection is not possible. These treatments entail the delivery of thermal energy through a needle electrode, which causes local tissue damage through coagulation (cooking) of the tissue. However, thermal ablation destroys tissue indiscriminately, meaning that any nearby blood vessels or neural components will also be damaged, which precludes thousands of patients from treatment each year.
Irreversible electroporation (IRE) was introduced to overcome these challenges and provide a treatment option for patients diagnosed with otherwise untreatable tumors. IRE uses pulsed electric fields to generate nanoscale pores in cell membranes, which lead to a homeostatic imbalance and cell death. Because IRE is a membrane-based effect, it does not rely on thermal effects to generate cellular injury, which allows it to be administered to tumors that are adjacent to critical tissue structures such as major nerves and vasculature.
Though IRE opened the door to treating otherwise inoperable tumors, procedures are technically challenging and require specialized anesthesia protocols. High-frequency irreversible electroporation (H-FIRE) was introduced by our group roughly a decade ago to simplify the procedure through the use of an alternate pulsing strategy. These higher frequency pulses offer several advantages such as limiting muscle contractions and reducing the risk of cardiac interference, both of which were concerns with IRE. However, H-FIRE ablations have been limited in size, and there is limited knowledge regarding the optimal pulsing strategy needed in order to maximize the ratio of therapeutic benefits to undesirable side effects like muscle stimulation and Joule heating. In this dissertation, we sought to understand how different pulse parameters affect these outcomes. Using a combination of computational, benchtop, and in vivo experiments, we comprehensively characterized the behavior of user-tunable pulse parameters and identified optimal methods for constructing H-FIRE protocols. We then translated our findings in a proof-of-principle study to demonstrate the ability of newly introduced waveform designs to increase ablation size with H-FIRE. Overall, this dissertation improves our understanding of how H-FIRE waveform selection affects clinical outcomes, introduces a new strategy for maximizing therapeutic outcomes with minimal side effects, and provides a framework for selecting parameters for specific applications.
|
18 |
Novel approaches against pancreatic cancer based on adenoviral targeting and tumor ablation preclinical evaluation of antitumor efficacyJosé Segarra-Martínez, Anabel 13 December 2011 (has links)
Els tractaments actuals pel càncer de pàncreas presenten un eficàcia limitada de manera que es necessari el desenvolupament de noves teràpies antitumorals. La teràpia gènica pel càncer de pàncreas basada en l’ús d’adenovirus es troba limitada per la baixa capacitat dels virus d’arribar a les masses tumoral, de distribuir-se pel tumor i d’infectar les cèl·lules tumorals. Nosaltres hem observat que l’administració intraductal d’adenovirus al ducte biliar de ratolins Ela-myc permet arribar als tumors pancreàtics de manera més eficient que per la via sistèmica. A més a més permet transduir la majoria de la massa tumoral restringint l’expressió adenoviral al teixit pancreàtic. D’altre banda, l’administració intraductal del tractament AduPARTat8TK/GCV retarda significativament el creixement tumoral i disminueix la toxicitat associada al tumor. El nou adenovirus AdTATMMP és activat per les MMP2/9 restaurant la capacitat de transducció de l’AdYTGRE in vitro, i incrementant 7,3 vegades la infecció del tumor pancreàtic. El tractament combinat de l’AduPARTat8TK/GCV amb gemcitabina presenta un efecte sinèrgic in vitro, però no millora la eficàcia antitumoral de les teràpies simples. D’altre banda el tractament de l’electroporació irreversible presenta efectes antitumorals significatius en tumors ortotòpics de la línia cel·lular BxPC-3-Luc i allarga la supervivència dels ratolins provocant una toxicitat mínima. / Novel therapies are needed to overcome the limited efficacy of current treatments in pancreatic cancer. Adenoviral gene therapy against pancreatic tumors is challenged by the limitation of viruses to reach the tumor mass, poorly distribute within the tumor and inefficiently transduce tumor cells. We show that intraductal administration of adenoviruses into the common bile duct of Ela-myc mice targets pancreatic tumors more efficiently than systemic delivery with relevant transduction of the bulk of the tumor and restricts expression to pancreatic tissue. Moreover, intraductal administration of AduPARTat8TK/GCV treatment significantly delayed tumor growth ameliorating tumor-associated toxicity. Noticeable the new generated MMP-activatable adenovirus AdTATMMP was susceptible to MMP2/9 activation, restored the transduction capacity of AdYTRGE in vitro, and increased 7.3 times tumor pancreas transduction. The multimodal treatment AduPARTat8TK/GCV and gemcitabine showed synergistic effects in vitro; however, did not enhance the antitumoral efficacy of single therapies. Interestingly, IRE treatment exhibited significant antitumor effects in BxPC-3-Luc orthotopic tumors and prolonged mice survival with minimal toxicity.
|
19 |
Analýza elektrických a tepelných jevů při elektroporaci / Analysis of electrical and thermal effects during electroporationNovotná, Veronika January 2020 (has links)
This dissertation thesis describes a phenomenon called electroporation. It is about its theoretical aspects as well as about modeling of processes in the tissue during electroporation. Further, it describes the technical design of two developed unique experimental generators of DC and AC pulses for electroporation purposes. It also includes a description of experiments which were done using discussed generators.
|
20 |
A Developed and Characterized Orthotopic Rat Glioblastoma Multiforme ModelThomas, Sean C. 02 November 2020 (has links)
This thesis project serves to fill experimental gaps needed to advance the goal of performing pre-clinical trials using an orthotopic rat glioblastoma model to evaluate the efficacy of high-frequency electroporation (H-FIRE) and QUAD-CTX tumor receptor-targeted cytotoxic conjugate therapies, individually and in combination, in selectively and thoroughly treating glioblastoma multiforme. In order to achieve this, an appropriate model must be developed and characterized. I have transduced F98 rat glioma cells to express red-shifted firefly luciferase, which will facilitate longitudinal tumor monitoring in vivo through bioluminescent imaging. I have characterized their response to H-FIRE relative to DI TNC1 rat astrocytes. I have demonstrated the presence of the molecular targets of QUAD in F98 cells. The in vitro characterization of this model has enabled preclinical studies of this promising glioblastoma therapy in an immunocompetent rat model, an important step before advancing ultimately to clinical human trials. / Master of Science / Treating glioblastoma multiforme (GBM), a form of cancer found in the brain, has not been very successful; patients rarely live two years following diagnosis, and there have been no major breakthrough advances in treatment to improve this outlook for decades. We have been working on two treatments which we hope to combine. The first is high-frequency electroporation (H-FIRE), which uses electrical pulses to kill GBM cells while leaving healthy cells alive and blood vessels intact. The second is QUAD-CTX, which combines a toxin with two types of protein that attach to other proteins that are more common on the surface of GBM cells than healthy cells. We have shown these to be effective at disproportionately killing human GBM cells growing in a lab setting. Before H-FIRE and QUAD-CTX may be tested on humans, we need to show them to be effective in an animal model, specifically rats. I have chosen rat glioma cells that will behave similarly to human GBM and a rat species that will not have an immune response to them. I have made these cells bioluminescent so that we may monitor the tumors as they grow and respond to our treatments. I have also shown that QUAD-CTX kills these rat glioma cells, as does H-FIRE. Because of this work, we are ready to begin testing these two treatments in rats.
|
Page generated in 0.1497 seconds