• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 104
  • 30
  • 17
  • 15
  • 14
  • 12
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 441
  • 168
  • 97
  • 93
  • 75
  • 57
  • 47
  • 43
  • 42
  • 42
  • 40
  • 39
  • 37
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mechanisms Of Diazoxide Induced Preconditioning In Primary Cortical Neurons.

Unknown Date (has links)
Current therapeutic options for ischemic stroke are limited to tissue plasminogen activator and mechanical clot removal therapies. Diazoxide (DZ) is a mitochondrial ATP-sensitive potassium channel opener and is protective in models of brain ischemia, but the signaling pathways involved are unknown. The mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis and is involved in protection against cerebral ischemia. The neuronal nitric oxide synthase (nNOS) pathway has also been shown to provide protection from ischemic insults. Additionally, mitochondrial respiratory status has not been investigated. I examined the role of the mTOR pathway, the nNOS pathway, and mitochondrial respiration in delayed DZ-induced preconditioning of neurons. I cultured rat primary cortical neurons and simulated ischemic stroke using oxygen-glucose deprivation (OGD) for 3 h followed by re-oxygenation. Viability, mitochondrial membrane potential, reactive oxygen species (ROS) measurements, and western blots were performed. The mTOR pathway was inhibited by rapamycin, Torin-1, and S6K targeted silencing RNA. The NOS pathway was inhibited by L-NAME. NO-donors SNP and DEANONOate (DEANO) were applied to rescue the effects of L-NAME. Mitochondrial oxygen consumption rate (OCR) was measured in intact neurons by serial injections of oligomycin, FCCP, and antimycin/rotenone. OGD decreased viability by 50 percent, depolarized mitochondria, and reduced mitochondrial respiration whereas DZ improved viability to 75 percent and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Diazoxide also increased phosphorylation of protein kinase B, mTOR, and S6K. Rapamycin, Torin-1, and S6K targeted siRNA abolished the protective effects of DZ. Co-application of L-NAME with DZ prevented preconditioning whereas adding SNP or DEANO along with L-NAME and DZ restored protection. Diazoxide increased phosphorylated nNOS. Interestingly, co-application of LNAME with DZ blocked the phosphorylation of nNOS as well as S6K. The ratio of phosphorylated/total Akt and mTOR were not significantly altered with L-NAME co-application. Diazoxide altered OCR 24 and 48 h after the ischemic period. Diazoxide had no acute effect on OCR but increased ECAR significantly. Activation of the mTOR and nNOS pathways is critical for DZ preconditioning in neurons. Furthermore, OCR is modified by the DZ-induced preconditioning of neurons. / acase@tulane.edu
32

Human Umbilical Cord Blood Cells Migration To Stroke Cns Tissue Extracts And The Potential Cytokines And Chemokines Involved

Newman, Mary B 21 June 2005 (has links)
Human umbilical cord blood (HUCB) cells consist of a heterogeneous population of cells, rich in hematopoietic stem and progenitor cells. These cells have been used in the treatment of various nonmalignant and malignant hematopoietic diseases. With in the last few years HUCB cells have been used in pre-clinical animal models of brain and spinal cord injuries, in which functional recovery has been shown. The properties of cord blood cells that could be important in cell transplantation (repair or replacement) of CNS injury or disease are currently being evaluated. The major focus of this study was to determine whether HUCB cells would migrate to ischemic tissue extracts. In addition, factors that may be inducing the cells to migrate were examined by identifying the cytokines or chemokines present in the ischemic tissue extracts. The secondary focus was to establish whether cultured HCUB cells are releasing cytokines and chemokines (in vitro) in response to their environment. The results of these studies showed that HUCB cells migrate to ischemic tissue in a time dependent manner. In which there is a 48 to 72 hour window of opportunity for the delivery of HUCB cells to the ischemic brain. In addition, the cord blood cells were shown to release cytokines that may be aiding in the behavioral recovery seen in the transplantation studies. The results from this study are promising in that the current 3-hour therapeutic window for the treatment of stroke victims, using approved anticoagulant treatment, may be extended with the use of cord blood cell therapy with the peak at 48 hours.
33

Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

Kavianipour, Mohammad January 2002 (has links)
<p>Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an increased adenosine production (evidenced by increased 5’-nucleotidase activity) and the successively lower adenosine levels observed in the interstitial space. We propose that this discrepancy in adenosine production vs. availability may be due to an increased metabolic utilisation of adenosine by the IP myocardium. According to our hypothesis, IP induces/activates a metabolic pathway involving deamination of adenosine to inosine. Inosine is further catalysed (in presence of Pi) to hypoxanthine and ribose-1-phosphate. Ribose-1-phosphate can be converted to ribose-5-phosphate in a phosphoribomutase reaction. Ribose-5-phosphate is an intermediate of the hexose monophosphate pathway also operative under anaerobic conditions. Hence the ribose moiety of adenosine can be utilised to generate pyruvate and ultimately ATP (via lactate formation) n.b. without any initial ATP investment. Such cost-effective adenosine utilisation may at least partly explain the cardioprotective effect of IP. Objectives & Methods: In the current studies we investigated the role of adenosine metabolism according to the suggested metabolic pathway by addition of adenosine and inhibition of its metabolism during IP as well as by comparing tissue and interstitial levels of key energy-metabolites following different protocols of IP. Furthermore, we studied the importance of the IP protocol with regard to the number of ischemia and reperfusion cycles for the cardioprotective effect of IP. In addition, the validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism was evaluated. For these purposes the microdialysis technique, tissue biopsies, and planimetric infarct size estimation in an open chest porcine heart-model was used. Results: Addition of adenosine via microdialysis probes enhanced the interstitial release of inosine, hypoxanthine and lactate in the myocardium of IP-subjects during prolonged ischemia. This finding did not occur in non-preconditioned subjects. Similar addition of deoxyadenosine a non-metabolizable adenosine receptor-agonist, did not evoke the same metabolic response. Purine nucleoside phosphorylase (PNP) is responsible for the conversion of inosine to hypoxanthine being a key enzyme in the above mentioned metabolic pathway. Inclusion of 8' aminoguanosine (a competitive inhibitor of PNP) decreased interstitial hypoxanthine release (as a token of PNP inhibition) and increased the release of taurine (marker of cellular injury) in the ischemic IP myocardium. Addition of inosine (a natural substrate of PNP) reverted these changes. Four IP cycles protected the heart more than one IP cycle as evidenced by morphometric and energy-metabolic data.Proportionally more hypoxanthine was found in the myocardium of IP subjects during prolonged ischemia. The ratio of tissue levels of inosine/hypoxanthine (used as an indicator of PNP activity) was significantly smaller in the IP groups. In addition, myocardial interstitial levels of energy-related metabolites (lactate, adenosine, inosine, and hypoxanthine) obtained by the microdialysis technique correlated with tissue biopsy levels of corresponding metabolites. Conclusions: IP activated a metabolic pathway favouring metabolism of exogenous adenosine to inosine, hypoxanthine and eventually lactate. Inhibition of adenosine metabolism following IP (via inhibition of PNP-activity resulted in enhanced cellular injury.</p><p>PNP-activity is proportionally higher in IP-myocardium. Metabolic utilisation of adenosine in IP-myocardium (as outlined above) may represent a costeffective way to produce ATP and at least partly explain the cardioprotective effect of IP. IP protects the myocardium in a graded fashion. Furthermore, we confirmed the validity of the microdialysis technique (in the current setting) for studying dynamic changes of myocardial energy metabolism.</p>
34

Myocardial energy metabolism in ischemic preconditioning, role of adenosine catabolism

Kavianipour, Mohammad January 2002 (has links)
Brief episodes of ischemia and reperfusion render the myocardium more resistant to necrosis from a subsequent, otherwise lethal ischemic insult. This phenomenon is called ischemic preconditioning(IP). Today, much is known about the signalling pathways involved in IP; however, the details of the final steps leading to cardioprotection, remain elusive. Adenosine (a catabolite of ATP) plays a major role in the signalling pathways of IP. Following IP there is an unexplained discrepancy between an increased adenosine production (evidenced by increased 5’-nucleotidase activity) and the successively lower adenosine levels observed in the interstitial space. We propose that this discrepancy in adenosine production vs. availability may be due to an increased metabolic utilisation of adenosine by the IP myocardium. According to our hypothesis, IP induces/activates a metabolic pathway involving deamination of adenosine to inosine. Inosine is further catalysed (in presence of Pi) to hypoxanthine and ribose-1-phosphate. Ribose-1-phosphate can be converted to ribose-5-phosphate in a phosphoribomutase reaction. Ribose-5-phosphate is an intermediate of the hexose monophosphate pathway also operative under anaerobic conditions. Hence the ribose moiety of adenosine can be utilised to generate pyruvate and ultimately ATP (via lactate formation) n.b. without any initial ATP investment. Such cost-effective adenosine utilisation may at least partly explain the cardioprotective effect of IP. Objectives &amp; Methods: In the current studies we investigated the role of adenosine metabolism according to the suggested metabolic pathway by addition of adenosine and inhibition of its metabolism during IP as well as by comparing tissue and interstitial levels of key energy-metabolites following different protocols of IP. Furthermore, we studied the importance of the IP protocol with regard to the number of ischemia and reperfusion cycles for the cardioprotective effect of IP. In addition, the validity of the microdialysis technique for experimental in vivo studies of myocardial energy metabolism was evaluated. For these purposes the microdialysis technique, tissue biopsies, and planimetric infarct size estimation in an open chest porcine heart-model was used. Results: Addition of adenosine via microdialysis probes enhanced the interstitial release of inosine, hypoxanthine and lactate in the myocardium of IP-subjects during prolonged ischemia. This finding did not occur in non-preconditioned subjects. Similar addition of deoxyadenosine a non-metabolizable adenosine receptor-agonist, did not evoke the same metabolic response. Purine nucleoside phosphorylase (PNP) is responsible for the conversion of inosine to hypoxanthine being a key enzyme in the above mentioned metabolic pathway. Inclusion of 8' aminoguanosine (a competitive inhibitor of PNP) decreased interstitial hypoxanthine release (as a token of PNP inhibition) and increased the release of taurine (marker of cellular injury) in the ischemic IP myocardium. Addition of inosine (a natural substrate of PNP) reverted these changes. Four IP cycles protected the heart more than one IP cycle as evidenced by morphometric and energy-metabolic data.Proportionally more hypoxanthine was found in the myocardium of IP subjects during prolonged ischemia. The ratio of tissue levels of inosine/hypoxanthine (used as an indicator of PNP activity) was significantly smaller in the IP groups. In addition, myocardial interstitial levels of energy-related metabolites (lactate, adenosine, inosine, and hypoxanthine) obtained by the microdialysis technique correlated with tissue biopsy levels of corresponding metabolites. Conclusions: IP activated a metabolic pathway favouring metabolism of exogenous adenosine to inosine, hypoxanthine and eventually lactate. Inhibition of adenosine metabolism following IP (via inhibition of PNP-activity resulted in enhanced cellular injury. PNP-activity is proportionally higher in IP-myocardium. Metabolic utilisation of adenosine in IP-myocardium (as outlined above) may represent a costeffective way to produce ATP and at least partly explain the cardioprotective effect of IP. IP protects the myocardium in a graded fashion. Furthermore, we confirmed the validity of the microdialysis technique (in the current setting) for studying dynamic changes of myocardial energy metabolism.
35

Reactive Oxygen Species (ROS) Up-regulates MMP-9 Expression Via MAPK-AP-1 Signaling Pathway in Rat Astrocytes

Malcomson, Elizabeth 14 March 2011 (has links)
Ischemic stroke is characterized by a disruption of blood supply to a part of the brain tissue, which leads to a focal ischemic infarct. The expression and activity of MMP-9 is increased in ischemic stroke and is considered to be one of the main factors responsible for damages to the cerebral vasculature, resulting in compromised blood-brain barrier (BBB) integrity. However, the regulatory mechanisms of MMP-9 expression and activity are not well established in ischemic stroke. Since hypoxia/ischemia and reperfusion generates reactive oxygen species (ROS), I hypothesize that ROS is one of factors involved in up-regulation of MMP-9 expression in brain cells and ROS-mediated effect may occur via MAPK signaling pathway. My study has provided the evidence that ROS is responsible for an increase in MMP-9 expression in astrocytes mediated via MAPK-AP1 signaling pathway. Preliminary studies with an in vitro model of the BBB suggest that inhibition of MMP-9 is a critical component of reducing ROS-induced BBB permeability.
36

Molecular Mechanisms of MMP9 Expression in Astrocytes Induced by Heme and Iron

Hasim, Mohamed Shaad 07 December 2012 (has links)
The disruption of the blood-brain barrier (BBB) occurs after ischemic and hemorrhagic stroke and contributes to secondary brain damage. Matrix metalloproteinase-9 (MMP9) has been identified to be the main mediator of post-stroke BBB disruption. It is unknown whether deposition of heme/iron in the brain following stroke would affect MMP9 expression. In this study, I have demonstrated that heme/iron up-regulated MMP9 expression in rat astrocytes and that this upregulation was most likely due to reactive oxygen species (ROS) generated by heme/iron deposition on cells. ROS can activate AP-1 and NFκB signaling pathways which were responsible for increased MMP9 expression. Inhibiting AP-1 and NFκB decreased MMP9 expression. Heme/iron deposition also activated Nrf-2 and increased the expression of neuroprotective heme oxygenase-1. My study suggests that heme and iron deposition generates ROS and increases MMP9 expression through AP-1 and NFκB signaling pathways and that targeting these pathways or clearance of heme and iron may modulate MMP9 expression for reduced damage.
37

Reactive Oxygen Species (ROS) Up-regulates MMP-9 Expression Via MAPK-AP-1 Signaling Pathway in Rat Astrocytes

Malcomson, Elizabeth 14 March 2011 (has links)
Ischemic stroke is characterized by a disruption of blood supply to a part of the brain tissue, which leads to a focal ischemic infarct. The expression and activity of MMP-9 is increased in ischemic stroke and is considered to be one of the main factors responsible for damages to the cerebral vasculature, resulting in compromised blood-brain barrier (BBB) integrity. However, the regulatory mechanisms of MMP-9 expression and activity are not well established in ischemic stroke. Since hypoxia/ischemia and reperfusion generates reactive oxygen species (ROS), I hypothesize that ROS is one of factors involved in up-regulation of MMP-9 expression in brain cells and ROS-mediated effect may occur via MAPK signaling pathway. My study has provided the evidence that ROS is responsible for an increase in MMP-9 expression in astrocytes mediated via MAPK-AP1 signaling pathway. Preliminary studies with an in vitro model of the BBB suggest that inhibition of MMP-9 is a critical component of reducing ROS-induced BBB permeability.
38

Uppföljning av patienter med Transitorisk Ischemisk Attack (TIA)- och minor stroke som medverkat i TIA-skolan på Enköpings lasarett

Skogmo, Emelie, Nyblom, Emelie January 2011 (has links)
The purpose of this study was to investigate how patients who had undergone Hallberg's  TIA-school at Enköpings Lasarett rate their physical and mental health 18 months after participation. Another purpose was to examine whether they re-diagnosed with a TIA or suffered a stroke. The design of the quantitative study was longitudinal and descriptive. In the study 16 patients participated and to measure their mental and physical health the questionnaire SF36 was used. The results showed that none of the participants suffered a new TIA or stroke since participation in the TIA-school. The participants' self-rated health measured with SF36 showed the highest values ​​in the areas of social function, emotional role function and physical role function. Which indicates a good self-rated health in these areas. Participants were asked how their physical and mental health limited them in everyday life. The majority of participants was not limited at all during the day, either physically (50%) or psychologically (62.5%). Our results demonstrate that a TIA-school like the one at Enköpings Lasarett may have long-term effects on an individual basis, but this effect can not be demonstrated in all off the patients.
39

Cordyceps sinensis preconditioning protects ischemic acute renal failure in rat

Wang, Hua-pin 06 February 2010 (has links)
According to traditional Chinese medicine , Cordyceps sinensis (CS) can prevent subjects from renal failure. The aim of this study was to investigate the protective effect of CS preconditioning on ischemic renal acute failure in rats and to assess its mechanism. The animal model of ischemic acute renal failure was performed by left nephrectomy and clamping right renal vessel for 45 mins in S-D rats. Cordyceps group had been pretreated with two-day 600 mg/kg CS before I/R injury. Rats were sacrificed at 1, 3, 6, 16, 48 and 120 h after reperfusion for evaluation of renal function and histopathological PASD staining. The immunohistochemistry and Western blotting of SDF-1£\, CXCR4 and Ki67 were also performed. £E-galactosidase activity was detected with the senescence staining. The results showed that the level of creatinine in Cordyceps group were significant lower after 48 hours I/R injury (p =0.04). PSAD staining in Cordyceps group revealed less tubular necrosis, tubular dilatation, and cast formation at 6 and 16 hour than in control group. Immunohistochemistry of SDF-1£\ in Cordyceps group demonstrated staining in the distal tubules and collecting ducts at 1, 3, 6, and 16 h. The CXCR4 signal of control group had gradually intensified from 1 to 6 hr after I/R . In Cordyceps group, the CXCR4 expression had been stabilized until 16 h after I/R. The £]-galactosidase activity was higher in control group at 1, 3 and 6 hours. However, the senescence was presented at 1 and 3 hours in Cordyceps group. The nuclear staining of repair enzyme Ki67 in Cordyceps group showed higher density than in control group. Pathologic morphology indicated CS may protect subjects from ischemic acute renal failure. CS also induced SDF-1£\ expression in early stage of I/R injury, and maintained the stable CXCR4 expression. CS can not only reduce the activity of senescence-related £]-galactosidase, but also regulate the expression of repair enzyme Ki67, indicating that CS may alleviate the ischemic-induced senescence and enhance renal repair.
40

The mechanisms and possible therapeutic methods of spinal cord ischemia-reperfusion injury

Liang, Cheng-Loong 27 December 2011 (has links)
Objective: Ischemic spinal cord injury is a serious complication of aortic surgery. The mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia/reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC. Although the extracellular signal-regulated kinases 1 and 2 (ERK1/2) are generally regarded as related to cell survival and proliferation, increasing evidence suggests that the role of the ERK1/2 pathway in I/R injury is contributory to inflammation. We investigated the effect of blocking ERK1/2 pathway to inhibit inflammation reaction in tolerance to spinal cord I/R injury. Methods: In the part 1 study, Sprague-Dawley rats were randomly assigned to 4 groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2-F Fogarty arterial embolectomy catheter for 3 min. I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 min, and shed blood reinfusion at the end of the procedures. (P+I/R) group animals received IPC, followed by 5 min reperfusion, and then I/R procedures for 12 min. Sham (S) group animals received anesthesia and underwent surgical preparation only. Neurological functions were evaluated, and lumbar segments were harvested for histopathological examination. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration. In the part 2 study, spinal cord ischemia rats was induced by occluding the thoracic descending aorta with a balloon catheter introduced through a femoral artery, accompanied by concomitant exsanguinations. Rats in the control group were given dimethyl sulfoxide (vehicle) before undergoing spinal cord ischemia/reperfusion injury. In the U0126-treated group, rats were pretreated with an inhibitor of ERK1/2, U0126, to inhibit ERK1/2 phosphorylation. The sham rats underwent aortic catheterization without occlusion. Parameters, including neurologic status, neuronal survival, inflammatory cell infiltration, and interleukin-1£] production in the spinal cords, were compared between groups. Results: The Tarlov scores in the (I/R) group were significantly lower than those in the (S), (P), and (P+I/R) groups on days 1, 3, 5, and 7. The numbers of surviving motor neurons in the (S), (P), and (P+I/R) groups were significantly higher than those in the (I/R) group. The (P) group exhibited higher spinal cord blood flow and tissue oxygenation after reperfusion than the (S) group. The (P+I/R) group exhibited higher spinal cord blood flow and tissue oxygenation within the first 60 min after reperfusion than the (I/R) groups. In the part 2 study, early ERK1/2 phosphorylation was observed after injury in the control group, followed by abundant microglial accumulation in the infarct area and increased interleukin-1£] expression. In the U0126 group, U0126 treatment completely blocked ERK1/2 phosphorylation. Microglial activation and spinal cord interleukin-1£] levels were significantly reduced. Neuronal survival and functional performance were improved. Conclusions: IPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. The ERK1/2 pathway may play a noxious role in spinal cord ischemia/reperfusion injury by participating in inflammatory reactions and cytokine production. According to our findings, these concepts may be the new therapeutic targets in patients requiring aortic surgery.

Page generated in 0.045 seconds