• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tearing of Black-Filled (N660) Synthetic Polyisoprene Rubber Vulcanizates at Various Temperatures

Xue, Tianxiang 14 May 2013 (has links)
No description available.
2

Strain-Induced Crystallization of Natural Rubber and Isoprene Rubber Studied by Solid-State NMR Spectroscopy

Hu, Jiahuan 16 May 2014 (has links)
No description available.
3

Plant proteins as multifunctional additives in polymer composites

DeButts, Barbara Lynn 16 April 2019 (has links)
Wheat gluten, wheat gliadin, and corn zein agricultural proteins were evaluated as multifunctional additives that: (1) provided reinforcement, (2) improved thermal stability, and (3) lowered the cost of polymer composites. Wheat proteins were utilized in two polymer matrices: poly(vinyl alcohol) (PVA) and synthetic cis-1,4-polyisoprene rubber (IR). The proteins were hydrolyzed and dispersed in the polymer matrix, where they cooperatively self-assembled into nanostructures called amyloids. Amyloids have the potential for high rigidity and stability due to high β-sheet content. In Chapter II, trypsin hydrolyzed wheat gluten (THWG) proteins were incubated in aqueous PVA solutions, then the composite solutions were air dried and compression molded into films. Anisotropic protein aggregates formed through a typical mechanism of β-sheet self-assembly, where a greater molding time and pressure and/or a lower PVA molecular weight allowed for more protein aggregation. The larger protein structures provided less reinforcement. In Chapters III and IV, THWG and trypsin hydrolyzed gliadin (THGd), a component protein in wheat gluten, were compounded in synthetic polyisoprene rubber to form nanocomposites. The reinforcement correlated to the protein β-sheet content and varied with protein concentration, protein batch preparation, processing temperature, and compounding time. The isotropic β-sheet containing structures were very thermally stable, even under harsh rubber compounding conditions. By optimizing the processing parameters uniform protein dispersion and optimal IR reinforcement were achieved, although the protein and IR phases had poor compatibility. In Chapter V, the THGd-IR composites were cured using a typical cure package and molding process. Protein aggregation into nanostructured β-sheets was observed during the curing process. Rubber reinforcement increased as a function of protein concentration and curing time. In Chapter VI, a hydrophobic protein (zein) was substituted for the hydrophilic protein (gliadin) used previously to improve protein-IR compatibility. The zein protein was better at reinforcing IR, while gliadin improved mechanical stability. Both zein and gliadin improved the thermal stability of IR. The results from Chapters II-VI showed an interesting concept: in situ filler formation in polymer matrices where the choice of protein, polymer, and processing conditions influenced the final morphology and composite properties. / Doctor of Philosophy / We use plastics every day for a wide range of applications, from food packaging to automobile tires. Many of these plastics are composite materials, called “polymer composites,” meaning they are made of two or more chemically distinct materials where one material is a polymer. For reference, a polymer is a long chain molecule made of many (“poly-”) units (“- mer”). Polymer composites often contain additives which modify the properties of the polymer. For example, many soft polymers, such as tire rubber, need to be made stiffer and so a “reinforcing additive” is used to improve the stiffness of the rubber. Many composite materials are made stiffer so less material can be used. This process is called “lightweighting.” The automotive industry and food packaging industry use this process to reduce weight and fuel costs. In this research, plant proteins are tested as reinforcing additives in polymer composites. Plant proteins, such as wheat gluten, are abundant, non-toxic, sustainable, and can self-assemble into extremely small, stiff structures. For these reasons, plant proteins offer an environmentally friendly alternative to typical reinforcing additives. This dissertation shows that plant proteins can reinforce two polymers with very different properties. The first polymer is poly(vinyl alcohol) (PVA), which is biodegradable, hydrophilic (i.e., “water loving”), and is commonly used in flexible food packaging. The second polymer is synthetic cis-1,4-polyisoprene rubber (IR), which is non-biodegradable, hydrophobic (i.e., “water fearing”), and is commonly used in automotive tires. In Chapters II-V, the wheat gluten protein is hydrolyzed, i.e., chemically “chopped” into short chain peptides, to encourage the self-assembly of the plant protein into small, stiff structures. The self-assembled protein structures survive typical industrial processing techniques, such harsh rubber compounding conditions which involve high heat, pressure, and shear forces (i.e., the material is pushed in opposing directions). In Chapter VI, full corn and wheat proteins are incorporated into IR using standard industrial mixing and curing processes. The corn and wheat proteins reinforce the synthetic rubber and inhibit the degradation of the chemical structure of cured rubber under high heat. At certain protein concentrations, the proteins improve the elasticity and lessen the permanent deformation in the polymer composite. Together, Chapters II-VI show that proteins from diverse plant sources can be used to improve the performance of polymers with dissimilar properties.
4

THE DEVULCANIZATION OF UNFILLED AND CARBON BLACK FILLED ISOPRENE RUBBER VULCANIZATES BY HIGH POWER ULTRASOUND

Sun, Ximei 02 October 2007 (has links)
No description available.
5

Compréhension des mécanismes de cristallisation sous tension des élastomères en conditions quasi-statiques et dynamiques / Understanding the mechanisms of strain induced crystallization of natural rubber in quasi-static and dynamic conditions

Candau, Nicolas 06 June 2014 (has links)
La cristallisation sous tension (SIC) du caoutchouc naturel (NR) a fait l’objet d’un nombre considérable d’études depuis sa découverte il y a près d’un siècle. Cependant, il existe peu d’informations dans la littérature concernant le comportement du caoutchouc à des vitesses de sollicitation proches des temps caractéristiques de cristallisation. L’objectif de cette thèse est alors de contribuer à la compréhension du phénomène de cristallisation sous tension grâce à des essais dynamiques à grandes vitesses. Pour répondre à cet objectif, nous avons développé une machine de traction permettant de déformer des échantillons d’élastomères à des vitesses de sollicitation pouvant aller jusqu’à 290s-1. Les essais ont été réalisés sur quatre NR avec des taux de soufre variables, deux NR chargés comportant des taux de noir de carbone différents. Nous avons également étudié un matériau synthétique à base de polyisoprène (IR) afin de comparer ses performances à celle du NR. Les essais dynamiques étant relativement difficiles à interpréter, un travail conséquent a donc été d’abord réalisé à basse vitesse. En outre, l’approche expérimentale proposée a été couplée à une approche thermodynamique de la SIC. Les mécanismes généraux associés à la cristallisation que nous identifions sont les suivants: lors d’une traction, la cristallisation consiste en l’apparition de populations cristallines conditionnée par l’hétérogénéité de réticulation des échantillons. Cette cristallisation semble nettement accélérée dès lors que ce cycle est réalisé au-dessus de la déformation de fusion. Nous attribuons ce phénomène à un effet mémoire dû à un alignement permanent des chaînes. Enfin, l’effet de la vitesse est décrit théoriquement en intégrant un terme de diffusion des chaînes dans la cinétique de SIC. Cette approche couplée à des essais mécaniques suggère que la SIC est essentiellement gouvernée par la cinétique de nucléation. Lors des tests dynamiques, la combinaison de l’effet mémoire et d’une accélération de la fusion pendant le cycle entraine une nette diminution voire une disparition de l’hystérèse cristalline. En outre, l’auto-échauffement, qui augmente progressivement avec la fréquence du cycle, tend à supprimer l’effet mémoire en provoquant le passage du cycle en dessous de la déformation de fusion. Lors de ces essais dynamiques, la SIC semble favorisée pour le matériau le moins réticulé. Nous attribuons cet effet au blocage d’enchevêtrements jouant le rôle de sites nucléants pour la SIC. Le matériau chargé semble avoir une moins bonne aptitude à cristalliser à hautes vitesses, par rapport à l’élastomère non chargé, en raison d’un auto-échauffement important à l’interface entre charges et matrice. Enfin, nous notons une convergence des cinétiques de cristallisation du caoutchouc naturel et synthétique à grande déformation et grande vitesse de sollicitation, que nous attribuons à la prédominance du terme énergétique d’origine entropique dans la cinétique de nucléation. / Strain induced crystallization (SIC) of Natural Rubber (NR) has been the subject of a large number of studies since its discovery in 1929. However, the literature is very poor concerning the study of SIC when samples are deformed with a stretching time in the range of the SIC characteristic time (around 10msec-100msec). Thus, the aim of this thesis is to contribute to the understanding of the SIC phenomenon thanks to dynamic tensile tests at high strain rates. To meet this goal, we have developed a dynamic tensile test machine allowing stretching samples of elastomers at strain rates up to 290 s-1. The tests are carried out on four NR with different sulphur amount, two NR with different carbon black filler amounts. We also studied a synthetic rubber made of polyisoprene chains (IR) able to crystallize under strain. Dynamic tests are relatively difficult to interpret; a significant work has thus been first performed at slow strain rate. Moreover, the experiments are coupled with a thermodynamic approach. First, the general mechanisms associated to the crystallization are identified as follows: during mechanical loading or during cooling in the deformed state, SIC is the result of successive appearance of crystallite populations whose nucleation and growth depend on the local network density. Crystallization is enhanced when the cycle is performed above the melting stretching ratio. This phenomenon is attributed to a memory effect due to a permanent alignment of the chains. Finally, the effect of the strain rate is theoretically described thanks to a diffusion term. This approach, coupled with experiments suggests that SIC is mainly governed by the nucleation kinetics. For the dynamic test, the combination of the memory effect and the acceleration of the melting during the cycle lead to a reduction or even disappearance of the crystalline hysteresis. In addition, self-heating, which progressively increases with the frequency of the cycle, causes the delay of the melting stretching ratio. This well explains why the crystallinity index decreases at the minimum stretching ratio of the dynamic cycles when the frequency increases. We finally compared the ability of our different rubbers to crystallize at high strain rates. SIC is enhanced for the weakly crosslinked rubber. This might be related to the dynamics of its free entanglements, these ones acting as supplementary crosslinks at high strain rates. Then, a filled rubber is compared to the unfilled one. We found that the filled sample has a lower ability to crystallize at high strain rates as compared to the unfilled one. This is likely due to the strong self-heating at the interface between the fillers and the rubbery matrix. Finally, we observe a convergence of crystallization kinetics in natural and synthetic rubbers at high strains and high strain rates. This is attributed to the predominance of the entropic energy in the nucleation kinetics in these experimental conditions.
6

Novel Modifications of Styrene-Butadiene and Isoprene Rubber

Schmitz, Nathan David 14 November 2022 (has links)
No description available.

Page generated in 0.072 seconds