• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 702
  • 126
  • 102
  • 88
  • 26
  • 17
  • 12
  • 12
  • 8
  • 7
  • 6
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 1531
  • 482
  • 232
  • 209
  • 192
  • 172
  • 154
  • 125
  • 118
  • 113
  • 88
  • 87
  • 84
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Bioarchaeological Investigations of Community and Identity at the Avondale Burial Place (McArthur Cemetery), Bibb County, Georgia

Vanderpool, Emily 09 December 2011 (has links)
This study conducts a multi-isotopic bioarchaeological analysis of the Avondale Burial Place (McArthur Cemetery), a recently discovered Emancipation-era African American cemetery near Macon, GA. Stable isotopic analyses were performed on available dental remains in order to reconstruct the diet and demography of the individuals buried at McArthur Cemetery. Specifically, δ18O and δ13C were characterized in tooth enamel and examined in tandem with collaborative osteological and mortuary analyses to reconstruct early-life diet and residential origin. The results suggest that members of the Avondale community buried in McArthur did not experience significant mobility, but rather resided in the area for most of their lives. Overall, these results greatly contribute to the genealogical research of McArthur Cemetery’s descendants as well as the fragmented history of the South by exploring whether the individuals in this community took part in the Great Migration following the Civil War.
322

Mechanisms of Platinum Group Metal Catalysis Investigated by Experimental and Theoretical Methods

Zimmer-De Iuliis, Marco 15 September 2011 (has links)
The results of kinetic isotope determination and computational studies on Noyori-type catalytic systems for the hydrogenation of ketones are presented. The catalysts examined include RuH2(NHCMe2CMe2NH2)(R-binap) and RuH(NHCMe2CMe2NH2)(PPh3)2. These complexes are active catalysts for ketone hydrogenation in benzene without addition of an external base. The kinetic isotope effect (KIE) for catalysis by RuH2(NHCMe2CMe2NH2)(R-binap) was determined to be 2.0 ± (0.1). The calculated KIE for the model system RuH(NHCH2CH2NH2)(PH3)2 was 1.3, which is smaller than the experimentally observed value but does not include tunneling effects. The complex OsH(NHCMe2CMe2NH2)(PPh3)2 is known to display autocatalytic behaviour when it catalyzes the hydrogenation of acetophenone in benzene. Pseudo first-order reaction conditions are obtained via addition of the product alcohol at the beginning of each kinetic experiment. The KIE determined using various combinations of deuterium-labeled gas, alcohol and ketone was found to be 1.1 ± (0.2). DFT calculations were used to explore the effect of the alcohol and the KIE. An induction period is observed at the start of the hydrogenation that is attributed to the formation of an alkoxide complex. A novel, diamine-orchestrated hydrogen-bonding network is proposed based on DFT calculations to explain how the alkoxide is converted back to the active catalyst. The tetradentate complexes trans-RuHCl[PPh2(ortho-C6H4)CH2NHCH2)]2 and RuHCl[PPh2(ortho-C6H4)CH2NHCMe2)]2 are known to be catalysts for the hydrogenation of acetophenone and benzonitrile in toluene when activated by KOtBu/KH. DFT studies were performed and a mechanism is proposed. The calculated rate limiting step for acetone hydrogenation was found to be heterolytic splitting of dihydrogen, which agrees well with experiment. The novel outer-sphere sequential hydrogenation of a CN triple bond and then a C=N double bond is proposed. A mechanism is proposed, which is supported by DFT studies, to explain the selectivity observed in the nucleophilic attack of amines or aziridines on palladium -prenyl phosphines complexes. Calculations on based on a palladium complex with two phosphorus donor ligands indicated that the observed selectivity would not be produced. Using two new model intermediates with either THF or aziridine substituted for a phosphine ligand trans to the unhindered side of the prenyl ligand did predict the experimentally observed selectivity.
323

An investigation of the radiation chemistry of a hydrocarbon system and simulation of ESR spectra of triplet state molecules

Claesson, Ola January 1980 (has links)
This thesis can be divided into two parts.The aim of the studies described in the first part of the thesis isto make clear the dominating processes in the selective decorrpositionof certain solutes that follow low-terrperature radiolysis of crystalline hydrocarbons. 1. The isotope effect in the production of radicals has been studiedby Electron Spin Resonance and Gas Chromatography/MassSpectrometry in the C10H22/C10D22 system. Two independent methodshave never been used on the same system in this contextbefore. The methods gave the same ratio of protiated to deuteratedradicals. 2. The isotope effect in the production of hydrogen gas has beenstudied with Mass Spectrometry in the C10H22/C10D22 system. 3. The amount of reactive D-atoms has been measured in C10D22 using an olefin, C10H20, as a scavanger. 4. The effect of an electron scavenger, C8H16Cl2, in C10H22 has been investigated. Two processes for the explanation of the isotope effects are discussed. a. transfer of excitation energy b. selective abstraction. The results show that reactive D-atoms are present in the C10D22 system and suggest that the isotope effects can be explained by selectiveabstraction. The effect of the electron scavenger can beexplained by energy transfer, but not entirely by selective abstraction. In the second part of the thesis, a method to simulate Electron SpinResonance spectra for the case of a Hamiltonian containing nuclearinteractions is described. The method has been applied to the S = 1 case. It is suggested that the method can be generalized to an arbitraryelectronic spin state, and to include second order nuclear corrections. / digitalisering@umu
324

Development of a novel mass-selected internal positive chemical ionization quadrupole ion trap mass spectrometry technique for the quantitative analysis of isotopic polyunsaturated fatty acids

Izadi, Hamid 23 July 2009 (has links)
Analytical instrumentation for quantitative in vivo stable isotope metabolic studies has included gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Limitations of existing MS techniques include excessive parent ion fragmentation, time-consuming sample preparation, and complex instrument operating parameters. In this thesis, procedures for set up and implementation of four GC-MS techniques are described. The first three replicate existing GC-MS single quadrupole methods on an ion trap, and are electron ionization (EI), external methane positive chemical ionization (PCI), and methane negative chemical ionization (NCI). The fourth method is a novel GC-MS mass-selected ion trap internal isobutane positive chemical ionization technique. Four groups of rats were administered isotopic linoleic acid, and liver tissue was collected for labelled linoleic and n-6 polyunsaturated fatty acids (PUFA) metabolites analyses. Qualitative utility of EI was confirmed, and its quantitative limitations exposed. Labelled 18:2n-6 and n-6 PUFA metabolites were detected using external methane PCI, though limited due to significant fragmentation. Methane NCI also detected labelled 18:2n-6, as well as minimizing fragmentation. However, time-consuming sample preparation and non-linear responses were major limitations. Internal isobutane PCI was useful in detecting isotopic 18:2n-6 and n-6 PUFA metabolites. Fragmentation was reduced compared to EI and external methane PCI. Limitations include fragmentation of HUFAs such as EPA and DHA. The novel internal isobutane PCI is more sensitive than external methane PCI and NCI, produces highly linear responses, is simpler and less expensive to operate than C-IRMS, offers reliable instrument operation, and sample preparation time is minimal. Regular quantitative analyses of HUFAs such as EPA and DHA may require further refinements such as using lower energy reagents than isobutane, including acetonitrile and ammonia.
325

Determination of Trivalent and Hexavalent Chromium with Mass Balance in Dietary Supplements Using Speciated Isotope Dilution Mass Spectrometry

Martone, Naudia 15 February 2013 (has links)
In order to assess the benefit or toxicity of chromium in dietary supplements, trivalent chromium and hexavalent chromium must be measured and verified with mass balance (sum of both species equaling total chromium). This is necessary because dietary supplements report trivalent chromium, an essential trace element, as an ingredient, but hexavalent chromium, a toxic carcinogen, may also be present. Because trivalent chromium is stable in acidic conditions and hexavalent chromium in alkaline conditions, interconversions between species occur and increase the difficulty of quantification. Therefore, EPA Method 3060A was first performed to extract hexavalent chromium. Then, EPA Method 3052 was performed on the residue to digest the remaining trivalent chromium. Speciated Isotope Dilution Mass Spectrometry (SIDMS) with Ion-Exchange Chromatography-Inductively Coupled Plasma-Mass Spectrometry (IC-ICP-MS) was used to account for interconversions as well as determination of trivalent and hexavalent chromium concentrations in the studied samples. Mass balance indicated that the analyzed supplements contained hexavalent chromium ranging from 0 to 16% of the total chromium content. / Bayer School of Natural and Environmental Sciences; / Environmental Science and Management (ESM) / MS; / Thesis;
326

Development of a novel mass-selected internal positive chemical ionization quadrupole ion trap mass spectrometry technique for the quantitative analysis of isotopic polyunsaturated fatty acids

Izadi, Hamid 23 July 2009 (has links)
Analytical instrumentation for quantitative in vivo stable isotope metabolic studies has included gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Limitations of existing MS techniques include excessive parent ion fragmentation, time-consuming sample preparation, and complex instrument operating parameters. In this thesis, procedures for set up and implementation of four GC-MS techniques are described. The first three replicate existing GC-MS single quadrupole methods on an ion trap, and are electron ionization (EI), external methane positive chemical ionization (PCI), and methane negative chemical ionization (NCI). The fourth method is a novel GC-MS mass-selected ion trap internal isobutane positive chemical ionization technique. Four groups of rats were administered isotopic linoleic acid, and liver tissue was collected for labelled linoleic and n-6 polyunsaturated fatty acids (PUFA) metabolites analyses. Qualitative utility of EI was confirmed, and its quantitative limitations exposed. Labelled 18:2n-6 and n-6 PUFA metabolites were detected using external methane PCI, though limited due to significant fragmentation. Methane NCI also detected labelled 18:2n-6, as well as minimizing fragmentation. However, time-consuming sample preparation and non-linear responses were major limitations. Internal isobutane PCI was useful in detecting isotopic 18:2n-6 and n-6 PUFA metabolites. Fragmentation was reduced compared to EI and external methane PCI. Limitations include fragmentation of HUFAs such as EPA and DHA. The novel internal isobutane PCI is more sensitive than external methane PCI and NCI, produces highly linear responses, is simpler and less expensive to operate than C-IRMS, offers reliable instrument operation, and sample preparation time is minimal. Regular quantitative analyses of HUFAs such as EPA and DHA may require further refinements such as using lower energy reagents than isobutane, including acetonitrile and ammonia.
327

Use of N2O and its Isotopic Composition to Investigate Nitrogen Processes in Groundwater

Li, Lin 30 September 2010 (has links)
This study explores the use of N2O and its isotopic composition to investigate nitrogen processes in groundwater aquifers. Groundwater sampling was undertaken in 2008-2009 at two septic system sites (Long Point site and Lake Joseph site) and two agricultural sites (Strathroy site and Woodstock site). All of these four sites have been studied previously, and denitrification zones were identified by using NO3- isotopes. Extremely broad ranges of N2O-N concentrations are present at septic system sites (1 to 1071 μg/L at Long Point and 0.1 to 106 μg/L at Lake Joseph). N2O concentrations at the agricultural sites show lower levels and narrower ranges (0.1 to 3.3 μg/L at Strathroy and 14.6 to 40.5 μg/L at Woodstock site). However, N2O-N concentrations at four sites except Strathroy are higher than the atmospheric equilibrium values (0.27 to 0.37 μg/L at 8 to 17°C) as well as N2O-N values in surface water (0.2 to 1.2 μg/L, Grand River). This provides indication of N2O production in subsurface in both septic system sites and agricultural sites. Using reported enrichment factors and measured ranges for NH4+ and NO3- isotopic values, ranges were calculated for the isotopic composition expected for N2O produced by nitrification and denitrification. At Long Point site, δ15N-N2O and δ18O-N2O ranging from -43.9 to +24.9 ‰ and +20.6 to +89.4 ‰ indicates that nitrification is mainly responsible for N2O accumulation in both proximal shallow and deep zones while some N2O at the bottom of the aquifer is presumably produced from denitrification. After N2O is produced in the plume core, δ15N and δ18O in N2O reveal that N2O is further consumed to N2. Also, N2O isotopic values cleanly show seasonal N2O production shifted from mostly nitrification in early season to primarily denitrification in late season. At Lake Joseph, δ15N-N2O and δ18O-N2O varying from -4.4 to -43.2 ‰ and +24.7 to +56.7 ‰ reveal that nitrification N2O was mainly present in aerobic zone whereas denitrification zone was found in downgradient anaerobic area. At Strathroy site, δ15N-N2O (+1.7 to -29.7 ‰) and δ18O-N2O (+33 to +65 ‰) show that N2O in shallow aquifer (< 5m depth) is presumably derived from atmosphere and nitrification whereas in deep aquifer (>5m depth), N2O formation occurs during denitrification. At Woodstock site, δ15N-N2O (-4.7 to -15.9 ‰) and δ18O-N2O (+30.7 to +37.1 ‰) at Woodstock provide indication of N2O production from a mixing of denitrification N2O and tropospheric N2O. N2O isotopic signatures are highly useful to identify N2O sources which include nitrification, denitrification, and dissolution of atmospheric N2O at both septic system sites and agricultural sites. Further, at Lake Joseph site and Woodstock site, denitrification evidence from NO3- concentration/isotopes is lacking but N2O isotopes suggest the occurrence of denitrification. At Long Point site, N2O isotopes indicated N2O production was by denitrification occurred early in the season; however, no NO3- isotopic enrichment was t that depth until in late season. These sites provide evidence that N2O is an early and sensitive indicator of denitrification in groundwater at both septic system and agricultural sites. Additionally, N2O isotopes are valuable for detecting N2O consumption whereas NO3- isotopes cannot provide insight into this process.
328

Integrating Methods for Characterizing the Passive Treatment of Mercury and Selenium in Groundwater and Sediment

Gibson, Blair Donald January 2011 (has links)
Standard geochemical analysis methods, such as aqueous geochemistry analysis and mineralogical analysis, frequently are utilized to evaluate the effectiveness of passive treatment systems, though they do not necessarily provide information regarding the mechanism of removal. Two emerging analytical techniques have shown promise by providing additional information to improve characterization of treatment systems: X-ray absorption spectroscopy (XAS) and stable isotope analysis. In this thesis, these novel analytical techniques were integrated with standard geochemical measurements to better characterize contaminated sites as well as potential treatment technologies used to mitigate aqueous contaminant mobility. Laboratory experiments were used to evaluate the removal of Se(VI) form simulated groundwater using granular Fe0 (GI) and organic carbon (OC). Greater than 90 % removal of Se(VI) was observed for systems containing GI after 5 days of reaction time and only 15 % removal was observed in systems containing OC. Synchrotron radiation-based XAS analysis of the treatment materials indicated the presence of both Se(IV) and Se(0) on the edges of GI grains after 6 hours reaction time, with no evidence of oxidized Se after 5 days of reaction. Several analytical techniques were integrated to characterize sediment contaminated with Hg and other contaminants through previous industrial practices. Analysis of the sediment by XAS indicated the possible presence of mercury selenide and copper sulfide. Resuspension tests were performed in oxic and anoxic conditions to simulate the effects of changing geochemical conditions of Hg release from sediments during dredging operations. The results indicated a higher release of Hg under oxic conditions in some sediment locations, suggesting that oxidative degradation of organic carbon or oxidative dissolution of Hg sulfides contributed to Hg release. The treatment of aqueous Hg(II) was evaluated with a variety of treatment media, including clay and GI. Treatment with GI was rapid, with 90 % removal observed after 2 hours reaction time. Extended X-ray absorption fine structure (EXAFS) analysis indicated the presence of Hg-O bonding on GI, suggesting that Hg was bound to Fe oxides formed on the surface of corroded GI. A new conceptual model for tracking the stable isotope fractionation of sulfur was coupled to the reactive transport model MIN3P to determine the effects of secondary transformations on sulfur cycling in passive treatment systems. Minor differences were noted when comparing the transport model-derived fractionation factor to calculations using a simplified Rayleigh distillation model, possibly indicating the effect of SO4 precipitation. The incorporation of stable isotope modeling provides a framework for the modeling of other isotope systems in treatment technologies.
329

Synthesis and Mechanistic Studies on the Reaction of N-phenylpyridin-2-Amine Palladacycle with Aryltrifluoroboratess to 9-(pryidin-2yl)-9H-carbazole

Li, Ya-Ming 09 August 2010 (has links)
An effiecient stoichiometric amount system has been developed for the synthesis of N-phenylpyridin-2-amine Palladacycle, and then reation with aryl trifluoroborate to 9-(pyridine-2-yl)-9H-carbazoles by C-H bond activation/ C-C bond formation and C-N bond formation. The subsitutent effect of the aryl trifluoroborate with N-phenylpyridin-2-amine Palladacycle intermediate was observed. Mechanistic studies of C-H bond cleavaged, including trapping of reaction intermediates and kinetic isotope effect experiments, are also presented.
330

The biology of the snail Cerithium zonatum in an intertidal zone of Green Island

Chang, Chih-Hsien 08 September 2010 (has links)
Cerithium zonatum is a dominate species in an intertidal zone of Shi-Lang, Green Island. This study aimed to characterize the population dynamics, reproduction and trophic ecology of C. zonatum in this intertidal zone. Results indicated C. zonatum in rocky habitat had high density, high growth rate and small shell length. In seagrass bed it was low in population density and large in shell length. The reproductive season of C. zonatum was from spring to summer, with indirect development and short planktonic period. The C. zonatum was a primary consumer with £_13C values of -6.97 - -6.26‰ and £_15N values of 3.65 - 5.13‰. They fed on seagrass detritus and periphyton including microalgae and filamentous green algae. The major food was seagrass detritus and filamentous green algae in the seagrass beds. In the rocky and sand habitats, the major food was microalgae and filamentous green algae. The population dynamics and food sources of C. zonatum were different among seagrass bed, rocky and sand habitats. In general, the C. zonatum was an opportunistic feeder with low mobility. And, the high population density and growth rate of C. zonatum in rocky habitat might result from abundant food sources in the area.

Page generated in 0.1909 seconds