• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence Analysis of Mean Shift Type Algorithms / 平均値シフト型アルゴリズムの収束解析

Yamasaki, Ryoya 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25440号 / 情博第878号 / 新制||情||147(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 田中 利幸, 教授 下平 英寿, 教授 山下 信雄 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

Chemical identification under a poisson model for Raman spectroscopy

Palkki, Ryan D. 14 November 2011 (has links)
Raman spectroscopy provides a powerful means of chemical identification in a variety of fields, partly because of its non-contact nature and the speed at which measurements can be taken. The development of powerful, inexpensive lasers and sensitive charge-coupled device (CCD) detectors has led to widespread use of commercial and scientific Raman systems. However, relatively little work has been done developing physics-based probabilistic models for Raman measurement systems and crafting inference algorithms within the framework of statistical estimation and detection theory. The objective of this thesis is to develop algorithms and performance bounds for the identification of chemicals from their Raman spectra. First, a Poisson measurement model based on the physics of a dispersive Raman device is presented. The problem is then expressed as one of deterministic parameter estimation, and several methods are analyzed for computing the maximum-likelihood (ML) estimates of the mixing coefficients under our data model. The performance of these algorithms is compared against the Cramer-Rao lower bound (CRLB). Next, the Raman detection problem is formulated as one of multiple hypothesis detection (MHD), and an approximation to the optimal decision rule is presented. The resulting approximations are related to the minimum description length (MDL) approach to inference. In our simulations, this method is seen to outperform two common general detection approaches, the spectral unmixing approach and the generalized likelihood ratio test (GLRT). The MHD framework is applied naturally to both the detection of individual target chemicals and to the detection of chemicals from a given class. The common, yet vexing, scenario is then considered in which chemicals are present that are not in the known reference library. A novel variation of nonnegative matrix factorization (NMF) is developed to address this problem. Our simulations indicate that this algorithm gives better estimation performance than the standard two-stage NMF approach and the fully supervised approach when there are chemicals present that are not in the library. Finally, estimation algorithms are developed that take into account errors that may be present in the reference library. In particular, an algorithm is presented for ML estimation under a Poisson errors-in-variables (EIV) model. It is shown that this same basic approach can also be applied to the nonnegative total least squares (NNTLS) problem. Most of the techniques developed in this thesis are applicable to other problems in which an object is to be identified by comparing some measurement of it to a library of known constituent signatures.
3

Research on Robust Fuzzy Neural Networks

Wu, Hsu-Kun 19 November 2010 (has links)
In many practical applications, it is well known that data collected inevitably contain one or more anomalous outliers; that is, observations that are well separated from the majority or bulk of the data, or in some fashion deviate from the general pattern of the data. The occurrence of outliers may be due to misplaced decimal points, recording errors, transmission errors, or equipment failure. These outliers can lead to erroneous parameter estimation and consequently affect the correctness and accuracy of the model inference. In order to solve these problems, three robust fuzzy neural networks (FNNs) will be proposed in this dissertation. This provides alternative learning machines when faced with general nonlinear learning problems. Our emphasis will be put particularly on the robustness of these learning machines against outliers. Though we consider only FNNs in this study, the extension of our approach to other neural networks, such as artificial neural networks and radial basis function networks, is straightforward. In the first part of the dissertation, M-estimators, where M stands for maximum likelihood, frequently used in robust regression for linear parametric regression problems will be generalized to nonparametric Maximum Likelihood Fuzzy Neural Networks (MFNNs) for nonlinear regression problems. Simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) will be derived. In the second part of the dissertation, least trimmed squares estimators, abbreviated as LTS-estimators, frequently used in robust (or resistant) regression for linear parametric regression problems will be generalized to nonparametric least trimmed squares fuzzy neural networks, abbreviated as LTS-FNNs, for nonlinear regression problems. Again, simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) algorithms will be provided. In the last part of the dissertation, by combining the easy interpretability of the parametric models and the flexibility of the nonparametric models, semiparametric fuzzy neural networks (semiparametric FNNs) and semiparametric Wilcoxon fuzzy neural networks (semiparametric WFNNs) will be proposed. The corresponding learning rules are based on the backfitting procedure which is frequently used in semiparametric regression.
4

Velká data - extrakce klíčových informací pomocí metod matematické statistiky a strojového učení / Big data - extraction of key information combining methods of mathematical statistics and machine learning

Masák, Tomáš January 2017 (has links)
This thesis is concerned with data analysis, especially with principal component analysis and its sparse modi cation (SPCA), which is NP-hard-to- solve. SPCA problem can be recast into the regression framework in which spar- sity is usually induced with ℓ1-penalty. In the thesis, we propose to use iteratively reweighted ℓ2-penalty instead of the aforementioned ℓ1-approach. We compare the resulting algorithm with several well-known approaches to SPCA using both simulation study and interesting practical example in which we analyze voting re- cords of the Parliament of the Czech Republic. We show experimentally that the proposed algorithm outperforms the other considered algorithms. We also prove convergence of both the proposed algorithm and the original regression-based approach to PCA. vi
5

Generalized quantile regression

Guo, Mengmeng 22 August 2012 (has links)
Die generalisierte Quantilregression, einschließlich der Sonderfälle bedingter Quantile und Expektile, ist insbesondere dann eine nützliche Alternative zum bedingten Mittel bei der Charakterisierung einer bedingten Wahrscheinlichkeitsverteilung, wenn das Hauptinteresse in den Tails der Verteilung liegt. Wir bezeichnen mit v_n(x) den Kerndichteschätzer der Expektilkurve und zeigen die stark gleichmßige Konsistenzrate von v-n(x) unter allgemeinen Bedingungen. Unter Zuhilfenahme von Extremwerttheorie und starken Approximationen der empirischen Prozesse betrachten wir die asymptotischen maximalen Abweichungen sup06x61 |v_n(x) − v(x)|. Nach Vorbild der asymptotischen Theorie konstruieren wir simultane Konfidenzb änder um die geschätzte Expektilfunktion. Wir entwickeln einen funktionalen Datenanalyseansatz um eine Familie von generalisierten Quantilregressionen gemeinsam zu schätzen. Dabei gehen wir in unserem Ansatz davon aus, dass die generalisierten Quantile einige gemeinsame Merkmale teilen, welche durch eine geringe Anzahl von Hauptkomponenten zusammengefasst werden können. Die Hauptkomponenten sind als Splinefunktionen modelliert und werden durch Minimierung eines penalisierten asymmetrischen Verlustmaßes gesch¨atzt. Zur Berechnung wird ein iterativ gewichteter Kleinste-Quadrate-Algorithmus entwickelt. Während die separate Schätzung von individuell generalisierten Quantilregressionen normalerweise unter großer Variablit¨at durch fehlende Daten leidet, verbessert unser Ansatz der gemeinsamen Schätzung die Effizienz signifikant. Dies haben wir in einer Simulationsstudie demonstriert. Unsere vorgeschlagene Methode haben wir auf einen Datensatz von 150 Wetterstationen in China angewendet, um die generalisierten Quantilkurven der Volatilität der Temperatur von diesen Stationen zu erhalten / Generalized quantile regressions, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We denote $v_n(x)$ as the kernel smoothing estimator of the expectile curves. We prove the strong uniform consistency rate of $v_{n}(x)$ under general conditions. Moreover, using strong approximations of the empirical process and extreme value theory, we consider the asymptotic maximal deviation $\sup_{ 0 \leqslant x \leqslant 1 }|v_n(x)-v(x)|$. According to the asymptotic theory, we construct simultaneous confidence bands around the estimated expectile function. We develop a functional data analysis approach to jointly estimate a family of generalized quantile regressions. Our approach assumes that the generalized quantiles share some common features that can be summarized by a small number of principal components functions. The principal components are modeled as spline functions and are estimated by minimizing a penalized asymmetric loss measure. An iteratively reweighted least squares algorithm is developed for computation. While separate estimation of individual generalized quantile regressions usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 150 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations

Page generated in 0.1581 seconds