1 |
Iwasawa Algebras and Parabolic Induction of p-adic Banach RepresentationsRoberts, Jeremiah 01 May 2024 (has links) (PDF)
Let G be a reductive group, and P a parabolic subgroup. Let L ⊆ K be finiteextensions of Qp and let G = G(L), P = P(L). In this thesis, we define the Iwasawa algebra K[[G]] and prove that it is isomorphic to the convolution algebra of compactly supported distributions on G. We show that under Schneider-Teitelbaum duality the func- tor of parabolic induction on the side of the admissible representations corresponds to the functor K[[G]] ⊗K[[P ]] − on the side of the K[[G]]-modules.This has important applications in the theory of admissible representations of G on p-adicBanach spaces. In particular, we prove the parabolic induction of an admissible represen- tation is again admissible, and prove Frobenius reciprocity for admissible representations.
|
2 |
K-theoretic methods in the representation theory of p-adic analytic groupsCsige, Tamás 08 February 2017 (has links)
Sei G eine p-adische analytische gruppe, welche die direkte Summe einer torsionfreien p-adische analytische gruppe H mit zerfallender halbeinfacher Liealgebra und einer n-dimensionalen abelschen p-adische analytische gruppe Z ist. In Kapitel 3 zeigen wir folgenden Satz: Sei M ein endlich erzeugter Torsionmodul über der Iwasawaalgebra von G, welcher keine nichtrivialen pseudo-null-Untermoduln besitzt. Dann ist q(M), das Bild von M in der Quotientenkategorie Q, genau dann volltreu, wenn M als Modul über der Iwasawaalgebra von Z torsionsfrei ist. Hierbei bezeichne Q den Serre-Quotienten der Kategorie der Moduln über der Iwasawaalgebra von G nach der Serre-Unterkategorie der pseudo-null-Moduln. In Kapitel 4 zeigen wir folgenden Satz: Es bezeichne T die Kategorie, deren Objekte die endlich erzeugten Modulen über der Iwasawaalgebra von G sind, welche auch als Moduln über der Iwasawaalgebra von H endlich erzeugt sind. Seien M, N zwei Objekte von T. Wir nehmen an, dass M, N keine nichttrivialen pseudo-null-Untermoduln besitzen und q(M) in Q volltreu ist. Dann gilt: Ist [M]=[N] in der Grothendieckgruppe von Q, so ist das Bild von N ebenfalls volltreu. In Kapitel 5 zeugen wir folgenden Satz: Sei G eine beliebige p-adische analytische Gruppe, welche keine Element der Ordung p besitzt. Dann sind die Grothendieckgruppen der Algebra stetiger Distributionen und der Algebra beschränkter Distributionen isomorph zu c Kopien des Rings der ganzen Zahlen, wobei c die Anzahl der p-regulären Konjugationsklassen des Quotienten von G nach einer offenen uniformen pro-p-Untergruppe H bezeichnet. / Let G be a compact p-adic analytic group with no element of order p such that it is the direct sum of a torsion free compact p-adic analytic group H whose Lie algebra is split semisimple and an abelian p-adic analytic group Z of dimension n. In chapter 3, we show that if M is a finitely generated torsion module over the Iwasawa algebra of G with no non-zero pseudo-null submodule, then the image q(M) of M via the quotient functor q is completely faithful if and only if M is torsion free over the Iwasawa algebra of Z. Here the quotient functor q is the unique functor from the category of modules over the Iwasawa algebra of G to the quotient category with respect to the Serre subcategory of pseudo-null modules. In chapter 4, we show the following: Let M, N be two finitely generated modules over the Iwasawa algebra of G such that they are objects of the category Q of those finitely generated modules over the Iwasaw algebra of G which are also finitely generated as modules over the Iwasawa algebra of H. Assume that q(M) is completely faithful and [M] =[N] in the Grothendieck group of Q. Then q(N) is also completely faithful. In chapter 6, we show that if G is any compact p-adic analytic group with no element of order p, then the Grothendieck groups of the algebras of continuous distributions and bounded distributions are isomorphic to c copies of the ring of integers where c denotes the number of p-regular conjugacy classes in the quotient group of G with an open normal uniform pro-p subgroup H of G.
|
3 |
Sur quelques aspects des extensions à ramification restreinte / On some aspects of extensions with restricted ramificationRougnant, Marine 16 April 2018 (has links)
Soit p un nombre premier, soit K/k une extension galoisienne finie de corps de nombres de degré premier à p et soit S un ensemble fini de premiers de k. Le groupe de Galois G(K,S) de la pro-p extension maximale de K non ramifiée en dehors de S est l'objet central de ce mémoire.On se place dans un premier temps dans le cas modéré : on suppose que S ne contient pas les places divisant p. Les travaux combinés de Labute, Minac et Schmidt sur les pro-p groupes mild ont permis d'exhiber les premiers exemples de groupes G(K,S) de dimension cohomologique 2. En implémentant un corollaire de leur critère dans le logiciel PARI/GP, on observe un phénomène de propagation : si k=Q et si le groupe G(Q,S) est mild, un fort pourcentage des groupes G(K,S) l'est également, pour K quadratique imaginaire. En associant au groupe G(K,S) deux graphes orientés dont les arcs sont définis par la ramification dans des extensions p-élémentaires, on démontre un critère théorique pour que ce phénomène de propagation ait lieu.On considère ensuite le cas sauvage : toutes les places au-dessus de p sont contenues dans S. Le groupe de Galois Δ:=Gal(K/k) agit sur G(K,S) ; on note G le plus grand quotient de G(K,S) sur lequel Δ agit trivialement et H le sous-groupe fermé de G(K,S) correspondant. Maire a étudié la liberté du Zp[[G]]-module H^{ab}. Nous poussons plus loin ses résultats en considérant les φ-composantes de H^{ab} sous l'action de Δ. Sous de bonnes hypothèses et sous la conjecture de Leopoldt, on démontre une condition nécessaire et suffisante pour que les φ-composantes soient libres ou non. La théorie du corps de classes permet de ramener cette condition à l'étude du régulateur normalisé, et donc à la p-rationalité du corps K. Les expérimentations faites sur PARI/GP dans des familles d'extensions cubiques cycliques, diédrales et cycliques de degré 4 du corps des rationnels corroborent une conjecture de Gras selon laquelle tout corps de nombres est p-rationnel pour p suffisant grand. / Let p be a prime number, let K/k be a Galois extension of number fields and let S be a finite set of primes of K. We suppose that the degree of K/k is finite and coprime to p. We denote by G(K,S) the Galois group of the pro-p maximal extension of K unramified outside S. We focus on this thesis on two differents aspects of this pro-p group.We are first interested in the tame case : we suppose that S does not contain any place above p. The works of Labute, Minac and Schmidt about mild pro-p groups brought the first examples of groups G(K,S) of cohomological dimension two. Using a corollary of their criterium, we compute some examples with PARI/GP and we observe a propagation phenomenum : if we take K=Q and if we suppose that G(Q,S) is mild, a large part of the pro-p groups G(K,S) with K imaginary quadratic are mild too. We then associate two oriented graphs to G(K,S) and we show a theoretical criterium proving mildness of some imaginary quadratic fields.We then consider the wild case where all the places dividing p belong to S. The Galois group Δ:=Gal(K/k) acts on G(K,S). The action of Δ is trivial on some quotients of G(K,S) ; we denote by G the maximal one and by H the corresponding closed subgroup of G(K,S). Maire has studied the Zp[[G]]-freeness of the module H^{ab}. We extend his results considering the φ-component of H^{ab} under the action of Δ. In a favourable context and under Leopoldt's conjecture, we show a necessary and sufficient condition for the freeness of the φ-components. This condition is connected to p-rational fields by class field theory. We present experiments with PARI/GP in some families of cubic cyclic, dihedral and quartic cyclic extensions of Q which support the following conjecture from Gras : every number field is p-rational for sufficiently large p.
|
Page generated in 0.0428 seconds