• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 63
  • 48
  • 25
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 338
  • 169
  • 71
  • 61
  • 59
  • 52
  • 46
  • 45
  • 31
  • 30
  • 29
  • 26
  • 26
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Arbitrary Lagrangian-Eulerian Discontinous Galerkin methods for nonlinear time-dependent first order partial differential equations / Arbitrary Lagrangian-Eulerian Discontinous Galerkin-Methode für nichtlineare zeitabhängige partielle Differentialgleichungen erster Ordnung

Schnücke, Gero January 2016 (has links) (PDF)
The present thesis considers the development and analysis of arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) methods with time-dependent approximation spaces for conservation laws and the Hamilton-Jacobi equations. Fundamentals about conservation laws, Hamilton-Jacobi equations and discontinuous Galerkin methods are presented. In particular, issues in the development of discontinuous Galerkin (DG) methods for the Hamilton-Jacobi equations are discussed. The development of the ALE-DG methods based on the assumption that the distribution of the grid points is explicitly given for an upcoming time level. This assumption allows to construct a time-dependent local affine linear mapping to a reference cell and a time-dependent finite element test function space. In addition, a version of Reynolds’ transport theorem can be proven. For the fully-discrete ALE-DG method for nonlinear scalar conservation laws the geometric conservation law and a local maximum principle are proven. Furthermore, conditions for slope limiters are stated. These conditions ensure the total variation stability of the method. In addition, entropy stability is discussed. For the corresponding semi-discrete ALE-DG method, error estimates are proven. If a piecewise $\mathcal{P}^{k}$ polynomial approximation space is used on the reference cell, the sub-optimal $\left(k+\frac{1}{2}\right)$ convergence for monotone fuxes and the optimal $(k+1)$ convergence for an upwind flux are proven in the $\mathrm{L}^{2}$-norm. The capability of the method is shown by numerical examples for nonlinear conservation laws. Likewise, for the semi-discrete ALE-DG method for nonlinear Hamilton-Jacobi equations, error estimates are proven. In the one dimensional case the optimal $\left(k+1\right)$ convergence and in the two dimensional case the sub-optimal $\left(k+\frac{1}{2}\right)$ convergence are proven in the $\mathrm{L}^{2}$-norm, if a piecewise $\mathcal{P}^{k}$ polynomial approximation space is used on the reference cell. For the fullydiscrete method, the geometric conservation is proven and for the piecewise constant forward Euler step the convergence of the method to the unique physical relevant solution is discussed. / Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Analyse von arbitrar Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) Methoden mit zeitabhängigen Testfunktionen Räumen für Erhaltungs- und Hamilton-Jacobi Gleichungen. Grundlagen über Erhaltungsgleichungen, Hamilton-Jacobi Gleichungen und discontinuous Galerkin Methoden werden präsentiert. Insbesondere werden Probleme bei der Entwicklung von discontinuous Galerkin Methoden für die Hamilton-Jacobi Gleichungen untersucht. Die Entwicklung der ALE-DG Methode basiert auf der Annahme, dass die Verteilung der Gitterpunkte zu einem kommenden Zeitpunkt explizit gegeben ist. Diese Annahme ermöglicht die Konstruktion einer zeitabhängigen lokal affin-linearen Abbildung auf eine Referenzzelle und eines zeitabhängigen Testfunktionen Raums. Zusätzlich kann eine Version des Reynolds’schen Transportsatzes gezeigt werden. Für die vollständig diskretisierte ALE-DG Methode für nichtlineare Erhaltungsgleichungen werden der geometrischen Erhaltungssatz und ein lokales Maximumprinzip bewiesen. Des Weiteren werden Bedingungen für Limiter angegeben. Diese Bedingungen sichern die Stabilität der Methode im Sinne der totalen Variation. Zusätzlich wird die Entropie-Stabilität der Methode diskutiert. Für die zugehörige semi-diskretisierte ALE-DG Methode werden Fehlerabschätzungen gezeigt. Wenn auf der Referenzzelle ein Testfunktionen Raum, der stückweise Polynome vom Grad $k$ enthält verwendet wird, kann für einen monotonen Fluss die suboptimale Konvergenzordnung $\left(k+\frac{1}{2}\right)$ und für einen upwind Fluss die optimale Konvergenzordnung $\left(k+1\right)$ in der $\mathrm{L}^{2}$-Norm gezeigt werden. Die Leistungsfähigkeit der Methode wird anhand numerischer Beispiele für nichtlineare Erhaltungsgleichungen untersucht. Ebenso werden für die semi-diskretisierte ALE-DG Methode für nichtlineare Hamilton-Jacobi Gleichungen Fehlerabschätzungen gezeigt. Wenn auf der Referenzzelle ein Testfunktionen Raum, der stückweise Polynome vom Grad k enthält verwendet wird, kann im eindimensionalen Fall die optimale Konvergenzordnung $\left(k+1\right)$ und im zweidimensionalen Fall die suboptimale Konvergenzordnung $\left(k+\frac{1}{2}\right)$ in der $\mathrm{L}^{2}$-Norm gezeigt werden. Für die vollständig diskretisierte ALE-DG Methode werden der geometrischen Erhaltungssatz bewiesen und für die stückweise konstante explizite Euler Diskretisierung wird die Konvergenz gegen die eindeutige physikalisch relevante Lösung diskutiert.
72

On the Number of Eigenvalues of Jacobi Operators

Gerald.Teschl@univie.ac.at 27 September 2001 (has links)
No description available.
73

Higher-Order Methods for Determining Optimal Controls and Their Sensitivities

McCrate, Christopher M. 2010 May 1900 (has links)
The solution of optimal control problems through the Hamilton-Jacobi-Bellman (HJB) equation offers guaranteed satisfaction of both the necessary and sufficient conditions for optimality. However, finding an exact solution to the HJB equation is a near impossible task for many optimal control problems. This thesis presents an approximation method for solving finite-horizon optimal control problems involving nonlinear dynamical systems. The method uses finite-order approximations of the partial derivatives of the cost-to-go function, and successive higher-order differentiations of the HJB equation. Natural byproducts of the proposed method provide sensitivities of the controls to changes in the initial states, which can be used to approximate the solution to neighboring optimal control problems. For highly nonlinear problems, the method is modified to calculate control sensitivities about a nominal trajectory. In this framework, the method is shown to provide accurate control sensitivities at much lower orders of approximation. Several numerical examples are presented to illustrate both applications of the approximation method.
74

Optimal Control Designs for Systems with Input Saturations and Rate Limiters

Umemura, Yoshio, Sakamoto, Noboru, Yuasa, Yuto January 2010 (has links)
No description available.
75

On the Solution of the Hamilton-Jacobi Equation by the Method of Separation of Variables

Bruce, Aaron January 2000 (has links)
The method of separation of variables facilitates the integration of the Hamilton-Jacobi equation by reducing its solution to a series of quadratures in the separable coordinates. The case in which the metric tensor is diagonal in the separable coordinates, that is, orthogonal separability, is fundamental. Recent theory by Benenti has established a concise geometric (coordinate-independent) characterisation of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRiemannian manifold. It generalises an approach initiated by Eisenhart and developed by Kalnins and Miller. Benenti has shown that the orthogonal separability of a system via a point transformation is equivalent to the existence of a Killing tensor with real simple eigen values and orthogonally integrable eigenvectors. Applying a moving frame formalism, we develop a method that produces the orthogonal separable coordinates for low dimensional Hamiltonian systems. The method is applied to a two dimensional Riemannian manifold of arbitrary curvature. As an illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of constant curvature, recovering known results. Using our formalism, we also derive the known superseparable potentials for Euclidean 2-space. Some of the original results presented in this thesis were announced in [8, 9, 10].
76

On the Solution of the Hamilton-Jacobi Equation by the Method of Separation of Variables

Bruce, Aaron January 2000 (has links)
The method of separation of variables facilitates the integration of the Hamilton-Jacobi equation by reducing its solution to a series of quadratures in the separable coordinates. The case in which the metric tensor is diagonal in the separable coordinates, that is, orthogonal separability, is fundamental. Recent theory by Benenti has established a concise geometric (coordinate-independent) characterisation of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRiemannian manifold. It generalises an approach initiated by Eisenhart and developed by Kalnins and Miller. Benenti has shown that the orthogonal separability of a system via a point transformation is equivalent to the existence of a Killing tensor with real simple eigen values and orthogonally integrable eigenvectors. Applying a moving frame formalism, we develop a method that produces the orthogonal separable coordinates for low dimensional Hamiltonian systems. The method is applied to a two dimensional Riemannian manifold of arbitrary curvature. As an illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of constant curvature, recovering known results. Using our formalism, we also derive the known superseparable potentials for Euclidean 2-space. Some of the original results presented in this thesis were announced in [8, 9, 10].
77

Higher-Order Methods for Determining Optimal Controls and Their Sensitivities

McCrate, Christopher M. 2010 May 1900 (has links)
The solution of optimal control problems through the Hamilton-Jacobi-Bellman (HJB) equation offers guaranteed satisfaction of both the necessary and sufficient conditions for optimality. However, finding an exact solution to the HJB equation is a near impossible task for many optimal control problems. This thesis presents an approximation method for solving finite-horizon optimal control problems involving nonlinear dynamical systems. The method uses finite-order approximations of the partial derivatives of the cost-to-go function, and successive higher-order differentiations of the HJB equation. Natural byproducts of the proposed method provide sensitivities of the controls to changes in the initial states, which can be used to approximate the solution to neighboring optimal control problems. For highly nonlinear problems, the method is modified to calculate control sensitivities about a nominal trajectory. In this framework, the method is shown to provide accurate control sensitivities at much lower orders of approximation. Several numerical examples are presented to illustrate both applications of the approximation method.
78

A Series Solution Framework for Finite-time Optimal Feedback Control, H-infinity Control and Games

Sharma, Rajnish 14 January 2010 (has links)
The Bolza-form of the finite-time constrained optimal control problem leads to the Hamilton-Jacobi-Bellman (HJB) equation with terminal boundary conditions and tobe- determined parameters. In general, it is a formidable task to obtain analytical and/or numerical solutions to the HJB equation. This dissertation presents two novel polynomial expansion methodologies for solving optimal feedback control problems for a class of polynomial nonlinear dynamical systems with terminal constraints. The first approach uses the concept of higher-order series expansion methods. Specifically, the Series Solution Method (SSM) utilizes a polynomial series expansion of the cost-to-go function with time-dependent coefficient gains that operate on the state variables and constraint Lagrange multipliers. A significant accomplishment of the dissertation is that the new approach allows for a systematic procedure to generate optimal feedback control laws that exactly satisfy various types of nonlinear terminal constraints. The second approach, based on modified Galerkin techniques for the solution of terminally constrained optimal control problems, is also developed in this dissertation. Depending on the time-interval, nonlinearity of the system, and the terminal constraints, the accuracy and the domain of convergence of the algorithm can be related to the order of truncation of the functional form of the optimal cost function. In order to limit the order of the expansion and still retain improved midcourse performance, a waypoint scheme is developed. The waypoint scheme has the dual advantages of reducing computational efforts and gain-storage requirements. This is especially true for autonomous systems. To illustrate the theoretical developments, several aerospace application-oriented examples are presented, including a minimum-fuel orbit transfer problem. Finally, the series solution method is applied to the solution of a class of partial differential equations that arise in robust control and differential games. Generally, these problems lead to the Hamilton-Jacobi-Isaacs (HJI) equation. A method is presented that allows this partial differential equation to be solved using the structured series solution approach. A detailed investigation, with several numerical examples, is presented on the Nash and Pareto-optimal nonlinear feedback solutions with a general terminal payoff. Other significant applications are also discussed for one-dimensional problems with control inequality constraints and parametric optimization.
79

Limits of invariants of algebraic cycles in a geometric degeneration /

Rogale Plazonic, Kristina. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Mathematics, August 2003. / Includes bibliographical references. Also available on the Internet.
80

Random and periodic homogenization for some nonlinear partial differential equations

Schwab, Russell William, 1979- 16 October 2012 (has links)
In this dissertation we prove the homogenization for two very different classes of nonlinear partial differential equations and nonlinear elliptic integro-differential equations. The first result covers the homogenization of convex and superlinear Hamilton-Jacobi equations with stationary ergodic dependence in time and space simultaneously. This corresponds to equations of the form: [mathematical equation]. The second class of equations is nonlinear integro-differential equations with periodic coefficients in space. These equations take the form, [mathematical equation]. / text

Page generated in 0.0376 seconds