• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Models cooperatius d'assignació de costos en un consorci de biblioteques

Sales i Zaguirre, Jordi 03 September 2002 (has links)
L'origen del present treball se situa en l'afany de modelització de fenòmens cooperatius aplicats a situacions reals. Des d'aquest punt de vista, parteix la idea d'estudiar el Consorci de Biblioteques Universitàries de Catalunya (CBUC).La intenció és estudiar com cal distribuir els costos que genera el CBUC entre els seus membres. En aquest sentit, el punt de vista de la Teoria de Jocs hi juga un paper interessant.En el capítol es presenta l'estructura de funcionament del CBUC, els seus objectius i els serveis que presta. En particular, ens centrem en la Biblioteca Digital de Catalunya, que és la institució que proveeix els membres del CBUC de l'accés a revistes científiques en format electrònic. Es presenten els models de fixació de preus d'algunes de les editorials amb què manté contacte el Consorci i els mètodes d'assignació dels costos generats per la subscripció de les revistes electròniques per part del Consorci. En el capítol 3 es presenta el model teòric d'estudi a partir del problema de demanda, basat en un conjunt de compradors interessats en l'adquisició d'un conjunt de béns que controla un venedor, el subconjunt de béns que desitja adquirir cadascun dels compradors i per les funcions de costos que determinen el preu dels béns.Seguint una anàlisi cooperativa, associem a cada problema de demanda un joc cooperatiu de costos que anomenem joc de costos cooperatiu de demanda. El joc determina per a cada coalició possible de jugadors, el cost d'adquisició d'un conjunt de béns quan cooperen entre ells.L'objectiu és determinar possibles solucions al problema de repartiment de costos que es genera en la compra conjunta. Així s'estudien condicions per determinar l'existència de distribucions en el core. Es simplifica el model general restringint les demandes dels jugadors (problema de demanda binària) i es determina el valor de Shapley del joc associat.En el cas de funcions de costos constants, el principal resultat és la descripció algèbrica que es realitza de la classe dels jocs constants de demanda. El capítol 4 estudia els jocs de demanda amb descompte, originats a partir de l'acord entre el CBUC i l'editorial Academic Press. Les funcions de costos que avaluen els costos dels béns introdueixen descomptes a partir del volum de demanda. Les funcions determinen l'obtenció de jocs còncaus.Els jocs de demanda amb descompte guarden relació amb els bankruptcy games o jocs de fallida. La relació permet l'obtenció de resultats sobre el core del joc i el valor de Shapley.Finalment, s'hi inclou una aplicació del model estudiat, basat en les dades reals de l'acord entre el CBUC i l'editorial Academic Press Ideal. L'aplicació compara la distribució que usa el CBUC per assignar costos amb les solucions clàssiques de la Teoria de Jocs obtingudes del joc de demanda amb descompte associat al problema. Es proposa el valor de Shapley com la solució més adient.El capítol 5 presenta els jocs de demanda amb externalitats, que parteix de l'acord entre el CBUC i l'editorial Kluwer. El model es basa en l'obligatorietat per part dels compradors d'adquirir tots el paquet de béns del venedor.El joc resultant és 1-còncau. En destaca la importància degut a què no existeix massa literatura sobre jocs k-convex originada en problemes. La 1-concavitat implica l'existència de distribucions en el core, la determinació de la seva estructura i l'obtenció de fórmules per al nucleolus i el valor de tau.Finalment, s'analitza una aplicació del model de demanda amb externalitats basada en les dades de l'acord entre el CBUC i l'editorial Kluwer. Les solucions estudiades en el model es presenten com a alternatives al mètode de distribució determinat pel Consorci. Es proposa el nucleolus com aquell concepte de solució que millor s'adapta a la problemàtica presentada.En l'apèndix s'adjunten els quadres necessaris per a la resolució de les aplicacions dels capítols 4 i 5.
2

Aportaciones al estudio de soluciones para juegos cooperativos

Giménez Pradales, José Miguel 14 December 2001 (has links)
El objetivo del trabajo consiste en la generalización y el estudio de modelos y métodos que han mostrado su eficiencia respecto a las soluciones para los juegos cooperativos propuestas por Shapley o por Banzhaf, así como el desarrollo de propiedades derivadas de su generalización. Estos y otros conceptos se extienden a una clase más amplia de soluciones para los juegos cooperativos: los semivalores. Conforme a la idea general que se ha establecido, la memoria se estructura en seis capítulos. El primer capítulo contiene una introducción a los conceptos básicos de la teoría de juegos cooperativos con utilidad transferible. El segundo capítulo aborda el estudio de los semivalores y las estructuras de coalición. Aquí se consideran familias de semivalores a partir de las cuales se forman sistemas de referencia consiguiendo, además, establecer semivalores inducidos en espacios de juegos con menor cardinal del conjunto de jugadores, con independencia del sistema de referencia escogido. Estas actuaciones permiten generalizar el proceso que lleva del valor de Shapley al valor coalicional de Owen, dando lugar al concepto de semivalor modificado para juegos con estructura de coalición. El capítulo finaliza estableciendo unas propiedades que consiguen caracterizar axiomáticamente la modificación de la solución de Banzhaf para juegos con estructura de coalición. En el tercer capítulo se emplean de modo particular técnicas y resultados provenientes del segundo con el objetivo de estudiar, desde el punto de vista de cualquier semivalor, las consecuencias de la formación de una única coalición bipersonal estable. Además de conseguir el cálculo efectivo de los resultados tanto a partir de la función característica como de la EML, este estudio consigue caracterizar diferentes semivalores en atención a su comportamiento respecto a esta situación de cooperación modificada. El cuarto capítulo se centra en otra situación de cooperación modificada: la cooperación parcial modelizada por grafos. Allí se prueba que todo semivalor cumple propiedades deseables según la formulación de Myerson (1977). También se afirma que la normalización aditiva de cualquier semivalor verifica esas mismas propiedades, resultando que normalización aditiva y cooperación parcial son conceptos ampliamente compatibles. Además, se consigue determinar qué jugadores resultan más beneficiados o más perjudicados por la supresión de una arista de un grafo de cooperación. El quinto capítulo está dedicado al potencial. Se define y estructura un concepto de potencial para cada semivalor construido de modo recurrente, en modo análogo a como Hart y Mas-Colell (1988) y Dragan (1995) introducen esos conceptos para las soluciones de Shapley y de Banzhaf, respectivamente. También se ofrece un procedimiento para calcular el potencial para cada semivalor mediante manipulaciones adecuadas de la EML. Otras nociones derivadas del potencial, como base potencial o espacio nulo, se extienden a todos los semivalores. Se resuelven problemas inversos como la determinación de los juegos que tienen una solución prefijada o la determinación del juego conocido el poder de éste y de sus juegos restringidos. El sexto capítulo trata el problema de la determinación del subespacio intersección de todos los espacios nulos por semivalores. En esta intersección se encuentran los juegos que no pueden distinguirse del nulo por ningún semivalor. Resuelto el problema anterior con la introducción de los juegos de conmutación, se consideran semivalores modificados para juegos con estructura de coalición y se busca determinar el subespacio de indistinguibles del nulo por este tipo de soluciones. Para los juegos de más de cuatro jugadores, la introducción de las estructuras de coalición consigue reducir de modo significativo la dimensión de cada subespacio de juegos indistinguibles del nulo. / The objective of the work consists of the generalization and the study of models and methods that have shown their efficiency with respect to the solutions for the cooperative games proposed by Shapley or Banzhaf, as well as the development of properties derived from its generalization. These and other concepts extend to a more ampler class of solutions for the cooperative games: the semivalues. According to the general objective that one has settled down, the memory structure in six chapters.The first chapter contains an introduction to the basic concepts of the theory of cooperative games with transferable utility. The second chapter undertakes the study of the semivalues and the coalition structures. Here, we consider families of semivalues obtaining reference systems for semivalues; in addition, we establish induced semivalues in spaces of games with minor cardinal of the set of players, independently of the chosen system of reference. These performances allow to generalize the process that takes of the value of Shapley to the coalition value of Owen, giving rise to the concept of modified semivalue for games with coalition structure. The chapter finalizes establishing properties that are able axiomatically to characterize the modification of the solution of Banzhaf for games with coalition structure.In the third chapter it is used, of particular way, technical and results of the second with the objective of to study, from the point of view of any semivalue, the consequences of the formation of a unique stable two-person coalition. We obtain the effective calculation of the results from the function characteristic and from the EML; this study it is able to characterize different semivalues in attention from his payment with respect to this situation of modified cooperation. In the fourth chapter one studies another situation of modified cooperation: the partial cooperation expressed by graphs. There, we prove that all semivalue, as allocation rule for these situations of cooperation, verify desirable properties according to the formulation of Myerson (1977). Also, one affirms that the normalization additive of any semivalue verifies those same properties; thus, normalization additive and partial cooperation are widely compatible concepts. In addition, one is able to determine what players are more benefited or more harmed by the suppression of an edge of a graph of cooperation.The fifth chapter is dedicated to the potential. A concept of potential for each semivalue is defined and constructed of recurrent way, in analogous way to as Hart and Mas-Colell (1988) and Dragan (1995) introduce those concepts for the solutions of Shapley and Banzhaf, respectively. Also a procedure is offered to calculate the potential for each semivalue by means of suitable manipulations of the EML. Other notions derived from the potential, as potential basis or null space, extend to all semivalues. Inverse problems like the determination of the games that have a concrete solution or the determination of the game from the power, are solved. The sixth chapter deals with the problem of the determination of the subspace intersection of all the null spaces by semivalues. In this intersection are the games that cannot be distinguished from the null game by semivalues. Solved the previous problem with the introduction of the commutation games, semivalues modified for games with coalition structure are considered and it looks for to determine the subspace of indistinguishable from the null game by this type of solutions. For games with five or more players, the introduction of coalition structures is able to reduce of significant way the dimension of each subspace of indistinguishable games from the null game.

Page generated in 0.091 seconds