51 |
Origem dos satélites irregulares de Júpiter: captura de asteroides binários primordiaisGaspar, Helton da Silva [UNESP] 14 August 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-08-14Bitstream added on 2014-06-13T18:40:51Z : No. of bitstreams: 1
000732470.pdf: 8779217 bytes, checksum: 636afeee108114a23f86e8666c463685 (MD5) / Muitos estudos sobre os satélites irregulares dos planetasgigantes têm sido publicados, especialmente motivados pelo exponencial aumento no número de objetos conhecidos proporcionado pela era observacional do CCD. Características peculiares, como órbitas altamente excêntricaseinclinadas,bem como distantes dos planetas, são incompatíveis com o modelo deformação local através deacreção de matéria do disco circumplanetário, de modoque apenas acaptura gravitacional explica a existência detal classe. No problema restrito de três corpos, capturasgravitacionais são de caráter temporário, de modo quefaz-se necessário um mecanismo não trivialde captura compatível com a existência desses objetos. Muitas têm sido propostas, mas as origens dos satélites irregulares de Júpiter, oplaneta com maior número de objetos da referidaclasse, ainda permanece indeterminada. Estudando o mecanismo de captura de asteroides binários,sob o cenário do problemade 4 corpos, consideram Sol eJúpiter como objetosprimários, obtivemos uma distribuição orbital de objetos capturados bastante semelhante à distribuição observada para os satélites irregular jovianos. O referido estudo também nos permitiucompreender as características intrínsecasmais relevantes do mecanismo.As evidencias nos permitem propor uma nova teoria consistente comas origens dos satélites irregulares,vinculada às origens da família Hilda de asteroides dos cinturão principal / Irregularsatellites of the giant planets have been largely studied since the CCD observational era exponentially increased the number of known objects of such class. Peculiar features of these objects,suchas highly inclined and eccentric orbits, and alsotheir distancefrom the planet are strong signaturesof non locally formed objects. Since gravitational captures underthe three-body theories are temporary, a non trivialcapture mechanism is necessary to explain their origin. Many theories about the origins of suchobjects have beenproposed, but the origins of irregular satellites of Jupiter,in particular, still remain undetermined, and Jupiter is the planet with the larger population ofsuch objects. Here we presentefforts devoted to the comprehension of binary-asteroid capture mechanism. We obtained a comparable orbital distribution of captured objects to the distribution of known objects. Furthermore, many relevant features of the mechanism were elucidated. The evidences lead us to propose a consistent theory for the origins ofirregularJovian satellites constrained tothe origin of Hilda family’s of asteroid
|
52 |
Theoretical aspects of the generation of radio noise by the planet JupiterDeift, Percy A January 1972 (has links)
Decameter radiation was first observed from Jupiter by Burke and Franklin (JGR 60, 213, 1955). In 1964 Bigg (Nature, 203, 1008, (1964)) found that 1o exerted a profound effect on the radiation. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency. Intro., p. 1. The majority of the early theories to explain the origin of the decameter emissions, attributed the radiation to an emission process occurring at or near the electron gyrofrequency or the plasma frequency (for a review see eg. Warwick, Space Sci. Rev. &" 841 (1967)). More recent work centred around the question of how 10 modulates the emission (see the article of Carr and Gulkis (Annual Review of Astronomy and Astrophysics Vol 8 (1970)) for a detailed review).
|
53 |
Origem dos satélites irregulares de Júpiter : captura de asteroides binários primordiais /Gaspar, Helton da Silva. January 2013 (has links)
Orientador: Ernesto Vieira Neto / Co-orientador: Othon Cabo Winter / Banca: Tadashi Yokayama / Banca: Valério Carruba / Banca: Dadid Nesvorny / Banca: Rodney da Silva Gomes / Resumo: Muitos estudos sobre os satélites irregulares dos planetasgigantes têm sido publicados, especialmente motivados pelo exponencial aumento no número de objetos conhecidos proporcionado pela era observacional do CCD. Características peculiares, como órbitas altamente excêntricaseinclinadas,bem como distantes dos planetas, são incompatíveis com o modelo deformação local através deacreção de matéria do disco circumplanetário, de modoque apenas acaptura gravitacional explica a existência detal classe. No problema restrito de três corpos, capturasgravitacionais são de caráter temporário, de modo quefaz-se necessário um mecanismo não trivialde captura compatível com a existência desses objetos. Muitas têm sido propostas, mas as origens dos satélites irregulares de Júpiter, oplaneta com maior número de objetos da referidaclasse, ainda permanece indeterminada. Estudando o mecanismo de captura de asteroides binários,sob o cenário do problemade 4 corpos, consideram Sol eJúpiter como objetosprimários, obtivemos uma distribuição orbital de objetos capturados bastante semelhante à distribuição observada para os satélites irregular jovianos. O referido estudo também nos permitiucompreender as características intrínsecasmais relevantes do mecanismo.As evidencias nos permitem propor uma nova teoria consistente comas origens dos satélites irregulares,vinculada às origens da família Hilda de asteroides dos cinturão principal / Abstract: Irregularsatellites of the giant planets have been largely studied since the CCD observational era exponentially increased the number of known objects of such class. Peculiar features of these objects,suchas highly inclined and eccentric orbits, and alsotheir distancefrom the planet are strong signaturesof non locally formed objects. Since gravitational captures underthe three-body theories are temporary, a non trivialcapture mechanism is necessary to explain their origin. Many theories about the origins of suchobjects have beenproposed, but the origins of irregular satellites of Jupiter,in particular, still remain undetermined, and Jupiter is the planet with the larger population ofsuch objects. Here we presentefforts devoted to the comprehension of binary-asteroid capture mechanism. We obtained a comparable orbital distribution of captured objects to the distribution of known objects. Furthermore, many relevant features of the mechanism were elucidated. The evidences lead us to propose a consistent theory for the origins ofirregularJovian satellites constrained tothe origin of Hilda family's of asteroid / Doutor
|
54 |
An investigation into the decametric radio emission by the planet JupiterGruber, Georg M January 1967 (has links)
From introduction: Jupiter is the largest planet in the solar system. Its distance from the Sun is five times that of the Earth and its mass is nearly two and a half times that of all the other planets added together. Jupiter turns about its own axis rather rapidly, once in just under ten hours, and it completes one revolution about the Sun in just under twelve years. Thus Earth has to pass almost directly between the Sun and Jupiter once every thirteen months. When this happens Jupiter is said to be in "opposition", as its position is then opposite to that of the Sun, when viewed from Earth. Around this time the planet will be most favourably placed for observations, as it is at its closest to Earth and up in the sky for a large part of the night. During the day observations on radio frequencies are more difficult, as the Sun is a source of great interference. Besides being an emitter of thermal electromagnetic radiation, as one would expect, Jupiter also emits two kinds of non-thermal radiation, one in the decimetre wavelength range and the other in the decametre wavelength range. A large number of scientists have worked on the problems of decimetre and decametre radiation. This thesis deals with some aspects of decametre radiation.
|
55 |
Distribution of plasma in the Io plasma torus from radio occultations during the Juno epochPhipps, Phillip Harvey 07 December 2019 (has links)
The innermost Galilean satellite, Io, is the most volcanically active body in the solar system. The volcanic activity leads to material being released into Jupiter's magnetosphere near Io's orbit. This material becomes ionized and trapped in Jupiter's rotating magnetic field. The trapped material forms a torus of material around Jupiter that is called the Io plasma torus. It contains an inner cold torus and an outer warm torus.
In this dissertation, I determine and interpret the distribution of plasma in the Io plasma torus from radio occultation observations by the Juno spacecraft.
I perform a feasibility study to show that Juno radio occultation observations should be able to detect the Io plasma torus. Based on this feasibility study, I predict that key Io plasma torus parameters -- value and location of maximum total electron content, and scale height -- can be determined with 10--20 percent uncertainties.
I analyze Juno radio occultation observations from Perijove 1. Perijove is the point where the spacecraft makes its closest approach. The observations are taken for a 6 hour period around perijove and are labeled as Perijove followed by a number which corresponds to the orbit number. From the observations I determine the Io plasma torus parameters and find that inferred densities are ~30% larger than models suggested. These results show that Juno radio occultation observations can detect and usefully characterize the Io plasma torus.
I analyze data from Perijoves 3, 6, and 8 and determine how Io plasma torus parameters vary. In this set of observations, the warm torus maximum total electron content and scale height do not vary greatly.
I test the prediction that the torus lies in the centrifugal equator by modeling the equator location. Observed and predicted locations agree reasonably if a Juno magnetic field model and a simple current sheet model are used. I find that the contribution of the current sheet is significant, which suggests that remote observations of the location of the Io plasma torus can be used to constrain Jupiter's magnetospheric current sheet.
|
56 |
Spacecraft-Plasma Interaction Modelling of Future Missions to JupiterRudolph, Tobias January 2012 (has links)
As an orbiter cruising to Jupiter will encounter different plasma environments, variety of spacecraft surface charging is expected. This surface potential can lead to inaccurate and wrong in-situ plasma measurements of on-board sensors, which explain the interest in simulating the charging.In this thesis the spacecraft-plasma interactions for a future mission to Jupiter are modelled with the help of the Spacecraft Plasma Interaction System, taking the case of a Jupiter Ganymede Orbiter (JGO) and a Jupiter Europa Orbiter (JEO) as an archetype for a future mission.It is shown that in solar wind at Earth and Jupiter, spacecraft potentials of about 8 V for the JEO, and 10 V to 11 V for the JGO are expected. Furthermore, at a distance of 15 Jupiter radii from Jupiter, the JGO is expected to charge to an electric potential of 2 V, except in the planetary shadow, where it will charge to a high negative potential of -40 V. Moreover, close to the orbit of Callisto, JGO will charge to 12 V in the sun and to 4.6 V in eclipse, due to a high secondary electron emission yield. / <p>Validerat; 20120115 (anonymous)</p>
|
57 |
The inner magnetosphere of Jupiter and the Io plasma torusBagenal, Frances January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 165-172. / by Frances Bagenal. / Ph.D.
|
58 |
In search of water vapor on Jupiter: laboratory measurements of the microwave properties of water vapor and simulations of Jupiter's microwave emission in support of the Juno missionKarpowicz, Bryan Mills 15 January 2010 (has links)
This research has involved the conduct of a series of laboratory measurements of the centimeter-wavelength opacity of water vapor along with the development of a hybrid radiative transfer ray-tracing simulator for the atmosphere of Jupiter which employs a model for water vapor opacity derived from the measurements. For this study an existing Georgia Tech high-sensitivity microwave measurement system (Hanley and Steffes , 2007) has been adapted for pressures ranging from 12-100 bars, and a corresponding temperature range of 293-525°K. Water vapor is measured in a mixture of hydrogen and helium. Using these measurements which covered a wavelength range of 6--20 cm, a new model is developed for water vapor absorption under Jovian conditions. In conjunction with our laboratory measurements, and the development of a new model for water vapor absorption, we conduct sensitivity studies of water vapor microwave emission in the Jovian atmosphere using a hybrid radiative transfer ray-tracing simulator. The approach has been used previously for Saturn (Hoffman, 2001), and Venus (Jenkins et al., 2001).
This model has been adapted to include the antenna patterns typical of the NASA Juno Mission microwave radiometer (NASA/Juno -MWR) along with Jupiter's geometric parameters
(oblateness), and atmospheric conditions. Using this adapted model we perform rigorous sensitivity tests for water vapor in the Jovian atmosphere. This work will directly improve our understanding of microwave absorption by atmospheric water vapor at Jupiter, and improve retrievals from the Juno microwave radiometer. Indirectly, this work will help to refine models for the formation of Jupiter and the entire solar system through an improved understanding of the planet-wide abundance of water vapor which will result from the successful opreation of the Juno Microwave Radiometer (Juno-MWR).
|
59 |
Les émissions radio aurorales de Jupiter : observations à distance, in-situ, et simulations. / Jupiter's auroral radio emissions : remote and in-situ observations, and simulations.Louis, Corentin 14 September 2018 (has links)
La thèse a porté sur l’étude des émissions radio aurorales de Jupiter, produites proche de la fréquence cyclotron électronique locale par Instabilité Maser Cyclotron, alimentée par des électrons résonants d’énergies de quelques keV, accélérés le long des lignes de champ magnétique de haute latitude.J’ai tout d’abord repris, validé et étendu le code de simulation SERPE (Simulateur d’Émissions Radio Planétaire et Exo–planétaire) développé au LESIA, qui permet de produire des spectres dynamiques des émissions radio visibles pour un observateur donné. J’ai effectué une étude paramétrique des simulations des émissions radio induites par Io afin de quantifier le rôle des principaux paramètres libres du code (fonction de distribution et énergie des électrons, modèle de champ magnétique, position de la ligne de champ magnétique active et altitude de la coupure ionosphérique). Cette étude a confirmé que les émissions Io sont correctement reproduites seulement lorsque le rayonnement est oblique par rapport aux lignes de champ magnétique, ce qui est simulé par SERPE grâce à des fonctions de distribution électronique de type cône de perte. J’ai également montré que (a) les paramètres qui contrôlent principalement la forme des émissions simulées dans le plan temps-fréquence sont le modèle de champ magnétique et l’énergie des électrons, et que (b) les simulations sont en excellent accord avec les observations, moyennant une fenêtre d’incertitude temporelle de ±2 heures.À l’aide de ce code, j’ai réalisé des simulations au long cours des émissions radio induites par Io, et de celles attendues pour Europe, Ganymède et Callisto. En comparant ces simulations à plusieurs années d’observations de Jupiter enregistrées avec les instruments Voyager/PRA et Cassini/RPWS (ponctuellement complétées par celles du réseau décamétrique de Nançay), j’ai prouvé l’existence d’émissions radio induites par Europe et Ganymède. L’étude statistique de ces émissions m’a permis d’établir leur propriétés moyennes (extension en fréquence, variabilité temporelle, et occurrence). Ce résultat ouvre un nouveau champ d’étude à distance, et au long cours, des interactions planète–satellites autres que Io–Jupiter.La comparaison de ces simulations avec les observations Juno/Waves m’a permis d’identifier sans ambiguïté les émissions radio induites par Io, ainsi que leur hémisphère d’origine (sans connaitre leur polarisation, non–mesurée par Juno/Waves), pour un observateur proche de l’équateur (cas de la Terre), comme a des latitudes plus hautes. Grâce à ces simulations, j’ai également montré que les émissions sont visibles seulement si l’ouverture de l’angle d’émission est supérieure à 70°±5°.Enfin, j’ai entamé une étude statistique de la distribution spatiale des sources radio aurorales traversées par la sonde Juno. J’ai ainsi cartographié les sources des diverses composantes (kilométriques à décamétriques) des émissions radio joviennes. La comparaison avec des modèles de champ magnétique récents, ainsi qu’avec des images UV (Juno/UVS et Hubble/STIS) m’a permis de démontrer une corrélation des émissions radio avec l’ovale auroral principal. / The thesis focused on the study of Jupiter's auroral radio emissions, produced close to the local electronic cyclotron frequency by Maser Cyclotron instability, powered by resonant electrons of energies of a few keV, accelerated along high magnetic field lines at high latitude.I first took over, validated and extended the simulation code ExPRES (Exoplanetary and Planetary Radio Emissions Simulator) developed at LESIA, which allows to produce dynamic spectra of visible radio emissions for a given observer. I performed a parametric study of simulations of radio emissions induced by Io in order to quantify the role of the main free parameters of the code (distribution function and energy of the electrons, magnetic field model, position of the active magnetic field line and altitude of the ionospheric cutoff). This study confirmed that Io emissions are correctly reproduced only when the radiation is oblique to the magnetic field lines, which is simulated by ExPRES through loss cone electronic distribution functions. I have also shown that (a) the parameters that mainly control the shape of the simulated emissions in the time-frequency plane are the magnetic field model and the electron energy, and that (b) the simulations are in excellent agreement with observations, with a time window of uncertainty of ± 2 hours.Using this code, I produced long-term simulations of radio emissions induced by Io, and those expected for Europa, Ganymede and Callisto. Comparing these simulations with several years of Jupiter observations recorded with the Voyager / PRA and Cassini / RPWS instruments (punctually supplemented by those of the Nançay decametric array), I proved the existence of radio emissions induced by Europa and Ganymede. The statistical study of these emissions allowed me to establish their average properties (extension in frequency, temporal variability, and occurrence). This result opens a new field of study, remotely and in the long-term, of the planet-satellite interactions other than Io-Jupiter.The comparison of these simulations with the Juno / Waves observations allowed me to unambiguously identify the radio emissions induced by Io, as well as their hemisphere of origin (without knowing their polarization, not measured by Juno / Waves), for an observer close to the equator (case of the Earth), as at higher latitudes. Thanks to these simulations, I have also shown that the emissions are visible only if the opening of the emission angle is greater than 70 ° ± 5 °.Finally, I began a statistical study of the spatial distribution of auroral radio sources traversed by the Juno probe. I thus mapped the sources of the various components (kilometer to HF) of Jovian radio broadcasts. Comparison with recent magnetic field models, as well as UV imagery (Juno / UVS and Hubble / STIS) allowed me to demonstrate a correlation of radio emissions with the main auroral oval.
|
60 |
Mise en œuvre et exploitation d'un spectromètre imageur pour l'étude sismique et la dynamique atmosphérique des planètes géantes / Development and tests of an imaging interferometer for seismology of the giant planetsGonçalves, Didier 28 March 2018 (has links)
Connaitre précisément la structure interne des corps célestes est indispensable pour, à la fois, comprendre la physique qui régit leur existence et le processus qui leur a donné naissance. La sismologie, d’abord appliquée à la Terre puis au soleil, s’est révélée être un outil très efficace pour sonder leurs intérieurs. Dans les années 70 (Vorontsov et al 1976), des premiers travaux théoriques ont étudié la possibilité d’une sismologie des planètes géantes gazeuses. Les premières tentatives de mesures d’oscillations ont eu lieu à la fin des années 80. La détection des modes d’oscillations de Jupiter s’est avérée une entreprise très délicate en raison de sa rotation rapide. Pour augmenter les chances de détection, un instrument spécifique a été construit au début des années 2000 à l’OCA. Cet instrument, appelé SYMPA, est un spectromètre imageur de type Mach-Zehnder capable de produire une carte de vitesse radiale de Jupiter. Une détection de modes d’oscillations sur Jupiter par cet instrument a été publiée par Gaulme et al en 2011. Une version améliorée de l’instrument (appelé DSI) a été proposée pour la mission spatiale JUICE à destination de Jupiter, et un nouveau prototype a été construit dans ce but. Par la suite, le projet s’est réorienté vers un programme d’observation depuis le sol sous la forme d’un réseau de trois télescopes répartis en longitude (USA, France, Japon) et financé par l’ANR à partir de 2015 (ANR JOVIAL). L’intérêt de la mise en réseau est d’assurer la continuité des données (météo mise à part). L’instrument étant capable de produire des cartes de vitesse radiales, le projet permet également l’étude de la dynamique atmosphérique des planètes géantes. Ce travail de thèse s’inscrit dans le contexte de préparation de JOVIAL, avec pour objectif de caractériser l’instrument en laboratoire et d’identifier les problèmes liés aux conditions réelles d’observation. Les mesures en laboratoires ont montré des performances conformes aux attentes, avec un bruit de mesure propre à l’instrument inférieur au bruit de photon attendu sur Jupiter. Les premières mesures sur le ciel avec un télescope ont mis en évidence une sensibilité de l’instrument au degré de polarisation de la lumière ainsi qu’une dérive de la vitesse mesurée liée aux instabilités de position de la pupille pendant les observations. Le design de l’instrument et de son interface avec le télescope a été revu pour résoudre ces problèmes. Plusieurs campagnes d’observations de Jupiter ont été réalisées, permettant de mettre sur pied une chaine complète de traitement des données, dont la validité a été vérifiée par des simulations réalistes. Les observations de Jupiter ont donné des résultats scientifiques particulièrement intéressants. L’analyse des données de deux campagnes de 2015 et 2016 a fourni des séquences temporelles de cartes de vitesses radiales de Jupiter. Une première étude a consisté à chercher dans ces cartes la signature des vents zonaux et de les comparer aux mesures réalisées par suivi des nuages sur des images résolues (cloud-tracking). Une telle mesure n’avait jamais été faite par effet Doppler. Le résultat, bien qu’affecté par des biais de mesures identifiés, montre des profils de vents stables d’une année sur l’autre et en cohérence avec les valeurs issues du cloud-tracking, sauf au niveau de la partie nord de la bande équatoriale de Jupiter. La mesure Doppler suggère en effet une vitesse de vent bien inférieure à la vitesse apparente dans cette zone, ce qui a potentiellement des implications sur les modèles de dynamique atmosphérique. Ces résultats sont très importants pour mieux comprendre les mesures de la sonde Juno, actuellement en orbite autour de Jupiter. L’analyse fréquentielle des données temporelles a été abordée en fin de thèse. Les analyses préliminaires ne semblent pas pour l’instant reproduire la détection de SYMPA. Une analyse plus poussée est nécessaire avant de conclure à une absence du signal. / To know precisely the internal structure of the celestial bodies is essential to both to understand the physics which governs their existence, and the process which gave them birth. First applied to the Earth and then to the sun, seismology has proven to be a very effective tool to sound their interiors. It has become natural and legitimate to question the possibility of seismology of gaseous giant planets. The first theoretical work was carried out in the 1970s (Vorontsov et al. 1976), and the first attempts to measure oscillations at the end of the 1980s. The detection of Jupiter's oscillating modes turned out to be very difficult (reduced flux, small apparent diameter, fast rotation ...). To increase the chances of detection, a specific instrument was built in the early 2000s at the OCA. This instrument, called SYMPA, is a Mach-Zehnder-type imaging spectrometer enable to produce radial velocity maps of Jupiter. A first detection of acoustic modes on Jupiter with this instrument was published by Gaulme et al in 2011. An improved version of the instrument (called DSI), based on the same principle, was built in the wake, with the primary objective of boarding a spacecraft to Jupiter. The project was finally reoriented towards an observation program from the ground in the form of a network of three telescopes equidistant in longitude (USA, France, Japan) and supported by the ANR fund starting in 2015 (ANR JOVIAL). The interest of the network is to ensure the continuity of data (weather apart). The instrument being able to produce radial velocity maps, the project also aims to study the atmospheric dynamics of giant planets. This thesis work is part of a preparation for JOVIAL, with the aim of characterizing the instrument and identifying the problems related to real observations conditions. Laboratory measurements showed expected performances with an instrumental noise level (related to thermal fluctuations) lower than expected photon noise on Jupiter. The first measurements on the sky with a telescope showed a sensitivity of the instrument to the degree of polarization of the light as well as drifts of the velocity measurements due the motions of the pupil position. Some adjustments of the design of the instrument and its interface with the telescope were necessary to solve these issues. Several Jupiter observation campaigns were carried out during the thesis, allowing the development of full data processing software. The complete procedure was tested against simulated data and validated. Two observations runs in 2015 and 2016 were analyzed to produce time sequences of radial velocity maps of Jupiter, providing very interesting scientific results. First, the maps were analyzed to look for the signature of the zonal winds and to compare them with the measurements made by cloud-tracking. Such measurements by Doppler effect were never made before. The result, albeit affected by measurement biases, showed stable year-to-year wind patterns and coherent results with cloud-tracking measurements, except at the northern part of the Jovian’s equatorial band. The Doppler measurement indeed suggests a wind speed well below the apparent speed in this area, which potentially has implications for the theory of atmospheric dynamics and will be helpful to interpret the Juno (a spacecraft presently orbiting Jupiter) measurements. Frequency analysis of temporal data was undertaken at the end of the thesis. The preliminary results do not seem for the moment to reproduce the SYMPA detection. Further analysis is necessary before concluding if the signal is absent or attenuated.
|
Page generated in 0.0783 seconds