• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Extensible Computing Architecture Design for Connected Autonomous Vehicle System

Hochstetler, Jacob Daniel 05 1900 (has links)
Autonomous vehicles have made milestone strides within the past decade. Advances up the autonomy ladder have come lock-step with the advances in machine learning, namely deep-learning algorithms and huge, open training sets. And while advances in CPUs have slowed, GPUs have edged into the previous decade's TOP 500 supercomputer territory. This new class of GPUs include novel deep-learning hardware that has essentially side-stepped Moore's law, outpacing the doubling observation by a factor of ten. While GPUs have make record progress, networks do not follow Moore's law and are restricted by several bottlenecks, from protocol-based latency lower bounds to the very laws of physics. In a way, the bottlenecks that plague modern networks gave rise to Edge computing, a key component of the Connected Autonomous Vehicle system, as the need for low-latency in some domains eclipsed the need for massive processing farms. The Connected Autonomous Vehicle ecosystem is one of the most complicated environments in all of computing. Not only is the hardware scaled all the way from 16 and 32-bit microcontrollers, to multi-CPU Edge nodes, and multi-GPU Cloud servers, but the networking also encompasses the gamut of modern communication transports. I propose a framework for negotiating, encapsulating and transferring data between vehicles ensuring efficient bandwidth utilization and respecting real-time privacy levels.

Page generated in 0.0476 seconds