• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1885
  • 395
  • 1
  • 1
  • 1
  • Tagged with
  • 2284
  • 1667
  • 581
  • 545
  • 348
  • 317
  • 315
  • 309
  • 227
  • 209
  • 185
  • 178
  • 138
  • 103
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1091

Design and Synthesis of Novel AT2 Receptor Ligands : From Peptides to Drug-Like Molecules

Georgsson, Jennie January 2006 (has links)
Many peptide receptors are of pharmaceutical interest and there is thus a need for new ligands for such receptors. Unfortunately, peptides are not suitable as orally administrated drugs since they are associated with poor absorption, rapid metabolism and low sub-receptor selectivity. One approach that should allow identification of more drug-like ligands is to use the structural information of the endogenous ligand to develop peptidomimetic compounds. The main objective of the work described in this thesis was to convert angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) to small drug-like compounds with retained bioactivity at the AT2 receptor. The study was performed step-wise via incorporation of well-defined secondary structure mimetics and repeated truncation of the peptide. Five scaffolds, comprising a benzene ring as a central element, suitable as a γ-turn or dipeptide mimetics were designed and synthesized. In order to decorate the scaffolds, a method of microwave-assisted alkoxycarbonylation was developed. After incorporation of the scaffolds into Ang II-related peptides or peptide fragments, the affinities for both the AT1 and the AT2 receptor were determined. In the first series of ligands, two tyrosine-related scaffolds were introduced as γ-turn mimetics in Ang II. All five pseudopeptides exhibited good affinities for the AT2 receptor. One compound was chosen for functional studies and was shown to act as an AT2 receptor agonist. After truncation of Ang II it was shown that C-terminal pentapeptide analogs were AT2 receptor selective agonists. A series of pseudopeptides comprising tyrosine-related scaffolds, derived from the pentapeptides, displayed high AT2 receptor affinities. Two compounds had agonistic effect at the AT2 receptor. This study revealed that the N-terminal part was of less importance while a C-terminal Ile residue was a key element for enhanced AT2 receptor affinity. In the final set of compounds, the peptide was truncated to tripeptide C-terminal fragments. After replacing His-Pro by a histidine-related scaffold small drug-like peptidomimetic compounds with nanomolar affinity for the AT2 receptor were identified.
1092

Pressurized Fluid Extraction : A Sustainable Technique with Added Values

Waldebäck, Monica January 2005 (has links)
The challenge for the future was defined by the Brundtland Commission (1987) and by the Rio Declaration (1992), in which the fundamental principles for achieving a sustainable development were provided. Sustainable chemistry can be defined as the contribution of chemistry to the implementation of the Rio Declaration. This thesis shows how Pressurized Fluid Extraction (PFE) can be utilized in chemical analysis, and how this correlates to Green Chemistry. The reliability and efficiency of the PFE technique was investigated for a variety of analytes and matrices. Applications discussed include: the extraction of the antioxidant Irganox 1076 from linear low density polyethylene, mobile forms of phosphorus in lake sediment, chlorinated paraffins from source-separated household waste, general analytical method for pesticide residues in rape seed, total lipid content in cod muscle, and squalene in olive biomass. Improved or comparable extraction yields were achieved with reduced time and solvent consumption. The decrease in use of organic solvents was 50-90%, resulting in minimal volatile organic compounds emissions and less health-work problem. Due to higher extraction temperatures and more efficient extractions, the selection of solvent is not as important as at lower temperatures, which makes it possible to choose less costly, more environmentally and health beneficial solvents. In general, extraction times are reduced to minutes compared to several hours. As a result of the very short extraction times, the amount of co-extracted material is relatively low, resulting in fewer clean-up step and much shorter analysis time. Selective extractions could be obtained by varying the solvent or solvent mixture and/or using adsorbents. In this thesis, the PFE technique was compared to the twelve principles of Green Chemistry, and it was shown that it follows several of the principles, thus giving a major contribution to sustainable chemistry.
1093

Chemical Tuning of the Magnetic Interactions in Layer Structures

Ronneteg, Sabina January 2005 (has links)
Thin metal films have found their use in many magnetic devices. They form pseudo two-dimensional systems, where the mechanisms for the magnetic interactions between the layers are not completely understood. Layered crystal structures have an advantage over such artificial systems, since the layers can be strictly mono-atomic without any unwanted admixture. In this study, some model systems of layered magnetic crystal structures and their solid solutions have been investigated by x-ray and neutron diffraction, Mössbauer and electron spectroscopy, heat-capacity and magnetic measurements, and first-principle electronic structure calculations, with the goal of deepening our understanding through controlled chemical synthesis. The compounds TlCo2S2, TlCo2Se2 and their solid solution TlCo2Se2-xSx, all containing well separated cobalt atom sheets, order with the moments ferromagnetically aligned within the sheets. In TlCo2S2, the net result is ferromagnetism, while TlCo2Se2 exhibits antiferromagnetism. The inter-layer distance is crucial for the long-range coupling, and it was varied systematically through Se-S substitution. The incommensurate helical magnetic structure found for TlCo2Se2 (x = 0) prevails in the composition range 0 ≤ x ≤ 1.5 but the pitch of the helix changes. The accompanying reduction in inter-layer distance on sulphur substitution varies almost linearly with the coupling angle of the helix. An additional competing commensurate helix (90°) appears in the medium composition range (found for x = 0.5 and 1.0). The systems TlCo2-xMexSe2 show helical magnetic ordering for Me = Fe or Cu, while a collinear antiferromagnetic structure occurs for Me = Ni. Magnetic order is created by iron substitution for copper in the Pauli paramagnetic TlCu2Se2, but now with the moments perpendicular to the metal sheets. TlCrTe2 forms a quite different crystal structure, with intra-layer ferromagnetic alignment and net collinear antiferromagnetism. In contrast to the other phases, the values of the moments conform well to a localised model for Cr3+.
1094

Combined Molecular Dynamics and Embedded-Cluster Calculations in Metal Oxide Surface Chemistry

Herschend, Björn January 2005 (has links)
The development and improvement of the functionality of metal oxides in heterogeneous catalysis and other surface chemical processes can greatly benefit from an atomic-level understanding of the surface chemistry. Atomistic calculations such as quantum mechanical (QM) calculations and molecular dynamics (MD) simulations can provide highly detailed information about the atomic and electronic structure, and constitute valuable complements to experimental surface science techniques. In this thesis, an embedded-cluster approach for quantum mechanical calculations has been developed to model the surface chemistry of metal oxides. In particular, CO adsorption on the MgO(001) and CeO2(110) surfaces as well as O vacancy formation at the CeO2(110) surface have been investigated. The cluster model has been thoroughly tested by comparison with electronic structure calculations for the periodic slab model. The chemical implications of distorted surface structures arising from the surface dynamics have been investigated by combining the QM embedded-cluster calculations with force-field based MD simulations. Here QM embedded-cluster calculations were performed using surface structures sampled from the MD simulations. This combined MD+QM embedded-cluster procedure was applied to the CO adsorption on MgO(001) at 50 K and the O vacancy formation on CeO2(110) at 300 K. Significant thermal variations of the CO adsorption energy and the O vacancy formation energy were observed. It was found that these variations could be estimated using the force field of the MD simulation as an interaction model. With this approach, the QM results were extrapolated to higher temperature and doped systems.
1095

On the Structure and Dynamics of Polyelectrolyte Gel Systems and Gel-surfactant Complexes

Råsmark, Per Johan January 2004 (has links)
This thesis describes the results of experimental work on polyelectrolyte gels and their interaction with oppositely charged surfactants, and presents two new algorithms applicable to the simulation of colloid and polymer systems. The model systems investigated were crosslinked poly(acrylate) (PA) and poly(styrene sulphonate) (PSS), and the surfactant was dodecyl trimethylammonium bromide (DoTAB). Pure gel materials were studied using dynamic light scattering. It was shown that the diffusion coefficient (D) increases with increasing degree of swelling and the concentration dependence is larger than predicted by scaling arguments. For gels at swelling equilibrium D increases with increasing degree of crosslinking. In subsequent studies on gel particles in DoTAB solution, Raman spectra were recorded at different positions in the gel. For both types of gels two distinct regions could be observed. For PA the surfactant is localised in the outer phase without any surfactant in the core, while for PSS the surfactant was distributed such that it had the same concentration relative to the polymer throughout the gel. In a second experiment, the kinetics for the deswelling of microscopic PSS particles in DoTAB solution was studied. It was found that the final volume varied linearly with the DoTAB concentration, and the rate of volume decrease could be fitted to a single exponential indicating stagnant layer diffusion to be the rate limiting process for the deswelling of the PSS particles. In the second part, I first describe an algorithm showing an efficient way to detect percolation in simulations, with periodic boundary conditions, using recursion. Spherical boundary conditions is an alternative to periodic boundary conditions for systems with long-range interactions. In the last part, the possibility to use the surface of a hypersphere in four dimensions for simulations of polymer systems is investigated, and algorithms for Monte Carlo and Brownian dynamics simulations are described.
1096

Improved mass accuracy in MALDI-TOF-MS analysis

Kempka, Martin January 2005 (has links)
<p>Mass spectrometry (MS) is an important tool in analytical chemistry today, particularly in the field of proteomics where identification of proteins is the central activity. The focus in this thesis has been to improve the mass accuracy of MS-analyses in order to improve the possibility for unambiguous identification of proteins.</p><p>In paper I a new peak picking algorithm has been developed for Matrix Assisted Laser Desorption/Ionization - Time of Flight - Mass Spectrometry (MALDI-TOF-MS). The new algorithm is based on the assumption that two sets of ions are formed during the ionisation, and that these two sets have different Gaussian-distributed velocity profiles. The algorithm then deconvolutes the spectral peak into two Gaussian distributions, were the narrower of the two distributions is utilized for peak picking. The two-Gaussian peak picking algorithm proved to be especially useful when dealing with weak, distorted peaks.</p><p>In paper II a novel chip-based target for MALDI analysis is described. The target features pairs of 50x50 μm anchors in close proximity. Each anchor within a pair could be individually addressed with different sample solutions. Each pair could then be irradiated with the MALDI laser, which allowed ionization to take place on separated anchors simultaneously. This made it possible for us to calibrate analytes with calibration standards that where physically separated from the analyte, but ionized simultaneously. The use of new chip-based MALDI target resulted in a 2-fold reduction of relative mass errors. We could also report a significant reduction of ion suppression. The small size of the anchors provided a good platform for efficient utilization of sample. This resulted in a detection limit of ca. 1.5 attomole of angiotensin I at a S/N of 22:1.</p>
1097

Amino Aacohols : stereoselective synthesis and applications in diversity-oriented synthesis

Torssell, Staffan January 2005 (has links)
<p>This thesis is divided into three separate parts with amino alcohols as the common feature. The first part describes the development of a novel three-component approach to the synthesis of α-hydroxy-β-amino esters. Utilizing a highly diastereoselective Rh(II)-catalyzed 1,3-dipolar cycloaddition of carbonyl ylides to various aldimines, syn-α-hydroxy-β-amino esters formed in high yields and excellent diastereoselectivities. This methodology was also applied in a short enantioselective synthesis of the C-13 side-chain of Taxol.</p><p>The second part of the thesis describes a total synthesis of D-erythro- Sphingosine based on a cross-metathesis approach to assemble the polar head group and the aliphatic chain.</p><p>The last part deals with the application of amino alcohols as scaffolds in a diversity-oriented protocol for the development of libraries of small polycyclic molecules. The design of the libraries is based on the iterative use of two powerful ring-forming reactions; a ring-closing metathesis and an intramolecular Diels-Alder reaction, to simultaneously introduce structural complexity and diversity.</p>
1098

Investigations of proton coducting polymers and gas diffusion electrodes for the polymer electrolyte fuel cell

Gode, Peter January 2005 (has links)
<p>Polymer electrolyte fuel cells (PEFC) convert the chemically bound energy in a fuel, e.g. hydrogen, directly into electricity by an electrochemical process. Examples of future applications are energy conversion such as combined heat and power generation (CHP), zero emission vehicles (ZEV) and consumer electronics. One of the key components in the PEFC is the membrane / electrode assembly (MEA). Both the membrane and the electrodes consist of proton conducting polymers (ionomers). In the membrane, properties such as gas permeability, high proton conductivity and sufficient mechanical and chemical stability are of crucial importance. In the electrodes, the morphology and electrochemical characteristics are strongly affected by the ionomer content. The primary purpose of the present thesis was to develop experimental techniques and to use them to characterise proton conducting polymers and membranes for PEFC applications electrochemically at, or close to, fuel cell operating conditions. The work presented ranges from polymer synthesis to electrochemical characterisation of the MEA performance.</p><p>The use of a sulfonated dendritic polymer as the acidic component in proton conducting membranes was demonstrated. Proton conducting membranes were prepared by chemical cross-linking or in conjunction with a basic functionalised polymer, PSU-pyridine, to produce acid-base blend membranes. In order to study gas permeability a new in-situ method based on cylindrical microelectrodes was developed. An advantage of this method is that the measurements can be carried out at close to real fuel cell operating conditions, at elevated temperature and a wide range of relative humidities. The durability testing of membranes for use in a polymer electrolyte fuel cell (PEFC) has been studied in situ by a combination of galvanostatic steady-state and electrochemical impedance measurements (EIS). Long-term experiments have been compared to fast ex situ testing in 3 % H2O2 solution. For the direct assessment of membrane degradation, micro-Raman spectroscopy and determination of ion exchange capacity (IEC) have been used. PVDF-based membranes, radiation grafted with styrene and sulfonated, were used as model membranes. The influence of ionomer content on the structure and electrochemical characteristics of Nafion-based PEFC cathodes was also demonstrated. The electrodes were thoroughly investigated using various materials and electrochemical characterisation techniques. Electrodes having medium Nafion contents (35<x<45 wt %) showed the best performance. The mass-transport limitation was essentially due to O2 diffusion in the agglomerates. The performance of cathodes with low Nafion content (<30 wt %) is limited by poor kinetics owing to incomplete wetting of platinum (Pt) by Nafion, by proton migration throughout the cathode as well as by O2 diffusion in the agglomerates. At large Nafion content (>45 wt %), the cathode becomes limited by diffusion of O2 both in the agglomerates and throughout the cathode. Furthermore, models for the membrane coupled with kinetics for the hydrogen electrode, including water concentration dependence, were developed. The models were experimentally validated using a new reference electrode approach. The membrane, as well as the hydrogen anode and cathode characteristics, was studied experimentally using steady-state measurements, current interrupt and EIS. Data obtained with the experiments were in good agreement with the modelled results. Keywords: polymer electrolyte fuel cell, proton conducting membrane, porous electrode, gas permeability, degradation, water transport</p>
1099

Multivariate methods in tablet formulation

Gabrielsson, Jon January 2004 (has links)
This thesis describes the application of multivariate methods in a novel approach to the formulation of tablets for direct compression. It begins with a brief historical review, followed by a basic introduction to key aspects of tablet formulation and multivariate data analysis. The bulk of the thesis is concerned with the novel approach, in which excipients were characterised in terms of multiple physical or (in most cases) spectral variables. By applying Principal Component Analysis (PCA) the descriptive variables are summarized into a few latent variables, usually termed scores or principal properties (PP’s). In this way the number of descriptive variables is dramatically reduced and the excipients are described by orthogonal continuous variables. This means that the PP’s can be used as ordinary variables in a statistical experimental design. The combination of latent variables and experimental design is termed multivariate design or experimental design in PP’s. Using multivariate design many excipients can be included in screening experiments with relatively few experiments. The outcome of experiments designed to evaluate the effects of differences in excipient composition of formulations for direct compression is, of course, tablets with various properties. Once these properties, e.g. disintegration time and tensile strength, have been determined with standardised tests, quantitative relationships between descriptive variables and tablet properties can be established using Partial Least Squares Projections to Latent Structures (PLS) analysis. The obtained models can then be used for different purposes, depending on the objective of the research, such as evaluating the influence of the constituents of the formulation or optimisation of a certain tablet property. Several examples of applications of the described methods are presented. Except in the first study, in which the feasibility of this approach was first tested, the disintegration time of the tablets has been studied more carefully than other responses. Additional experiments have been performed in order to obtain a specific disintegration time. Studies of mixtures of excipients with the same primary function have also been performed to obtain certain PP’s. Such mixture experiments also provide a straightforward approach to additional experiments where an interesting area of the PP space can be studied in more detail. The robustness of a formulation with respect to normal batch-to-batch variability has also been studied. The presented approach to tablet formulation offers several interesting alternatives, for both planning and evaluating experiments.
1100

Surface and Bulk Reactivity of Iron Oxyhydroxides : A Molecular Perspective

Song, Xiaowei January 2013 (has links)
Iron oxyhydroxide (FeOOH) mineral plays an important role in a variety of atmospheric, terrestrial and technological settings. Molecular resolution of reactions involving these minerals is thereby required to develop a fundamental understanding of their contributions in processes taking place in the atmosphere, Earth’s upper crust as well as the hydrosphere. This study resolves interactions involving four different types of synthetic FeOOH particles with distinct and well-defined surfaces, namely lath- and rod-shaped lepidocrocite (γ), goethite (α) and akaganéite (β). The surface and bulk reactivities of these particles are controlled by their distinct structures. When exposed to ambient atmospheric or aqueous conditions their surfaces are populated with different types of (hydr)oxo functional groups acting as reaction centers. These sites consist of hydroxyl groups that can be singly- (≡FeOH, -OH), doubly- (≡Fe2OH, μ-OH), or triply-coordinated (≡Fe3OH, μ3-OH) with underlying Fe atoms. Moreover, these sites exhibit different types, densities, distributions, as well as hydrogen bonding patterns on different crystal planes for each mineral. Knowledge of the types and distributions of hydroxyl groups on minerals with different surface structures is fundamental for building a molecular-scale understanding of processes taking place at FeOOH particle surfaces. In this thesis, Fourier transform infrared (FTIR) spectroscopy was used to resolve the interactions between (hydr)oxo groups of FeOOH particles with (in)organic acids, salts, water vapor as well as carbon dioxide. The focus on such compounds was justified by their importance in natural environments. This thesis is based on 9 articles and manuscripts that can be found in the appendices. FTIR spectroscopic signatures of hydroxyl groups in the bulk of well crystallized FeOOH minerals were characterized for structural differences and thermal stabilities. Those of akaganéite were particularly resolved for the variable bond strength of bulk hydroxyls induced by the incorporation of HCl through nanostructured channels at the terminations of the particles. FTIR bands of hydroxyl groups at all particle surfaces were monitored for responses to thermal gradients and proton loadings, providing experimental validation to previous theoretical accounts on surface site reactivity. This site reactivity was resolved further in the fluoride (F-) and phosphate (PO43-) ions adsorption study to follow the site selectivity for ligand-exchange reactions. These efforts showed that singly-coordinated groups are the primary adsorption centers for ligands, doubly-coordinated groups can only be exchanged at substantially higher ligand loadings, while triply coordinated groups are largely resilient to any ligand-exchange reaction. These findings helped consolidate fundamental knowledge that can be used in investigating sorption processes involving atmospherically and geochemically important gases. The latter parts of this thesis were therefore focused on water vapor and carbon dioxide interactions with these FeOOH particles. These efforts showed how surface structure and speciation affect sorption loadings and configurations, as well as how water diffused into and through the akaganéite bulk. Hydrogen bonding is one of the most important forms of interactions between gas phase and minerals. It plays a crucial role in the formation of thin water films and in stabilizing surface (bi)carbonate species. The affinity of surface hydroxyl groups for water and carbon dioxide is strongly dependent on their abilities to form hydrogen bonds. These are controlled by coordination number and site accessibility/steric constraints. In agreement with the aforementioned ligand-exchange studies, surfaces dominated by singly coordinated groups have stronger ability to accumulate water layers than the ones terminated by groups of larger coordination number. Collectively, these efforts consolidate further the concept for structure-controlled reactivities in iron oxyhydroxides, and pave the way for new studies along such lines.

Page generated in 0.0297 seconds