Spelling suggestions: "subject:"kernelbased interpolation"" "subject:"kernelised interpolation""
1 |
INVERSE-DISTANCE INTERPOLATION BASED SET-POINT GENERATION METHODS FOR CLOSED-LOOP COMBUSTION CONTROL OF A CIDI ENGINEMaringanti, Rajaram Seshu 15 December 2009 (has links)
No description available.
|
2 |
Curvilinear Analysis and Approximation of Cardiac DTI In-VivoToussaint, Nicolas 26 July 2012 (has links) (PDF)
Diffusion Tensor MRI can be used to depict the anisotropy of tissue. Translation of this technique to moving objects such as the beating heart has recently become feasible, but remains a challenging task, often leading to high noise levels and limited accuracy. Ultimately, knowledge of the 3D fibre architecture of the myocardium invivo should allow for a better understanding of the cardiac function both in healthy and pathological situations. The main goal of the work presented in this thesis is to overcome the difficulties that such technology presents, by introducing a combination of image processing and analysis approaches. In particular, the characteristic ellipsoidal shape of the left ventricular chamber is used to introduce a shape-based prolate spheroidal coordinate frame that allows for comprehensive, robust and dedicated analysis of diffusion tensor data within the myocardial wall. It is shown that the description of this information is more compact in this coordinate frame. Furthermore, it is demonstrated that the acquisition limitations can be overcome by introducing an approximation scheme based on this coordinate frame. These techniques are tested on ex-vivo datasets to assess their fidelity and sensitivity. Finally, these techniques are applied in-vivo on a group of healthy volunteers, where 2D DTI slices of the LV were acquired at end diastole and end systole, using cardiac dedicated diffusion MR acquisition. Results demonstrate the advantages of using curvilinear coordinates both for the analysis and the approximation of cardiac DTI information. Resulting in-vivo fibre architectures were found to agree with previously reported studies on ex-vivo specimens. The outcome of this work can open the door for clinical applications and cardiac electrophysiology modelling, and improve the understanding of the left ventricular structure and dynamics.
|
3 |
Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle / Spectral approach for kernel-based interpolation and conditional positivityGauthier, Bertrand 12 July 2011 (has links)
Nous proposons une approche spectrale permettant d'aborder des problèmes d'interpolation à noyaux dont la résolution numérique n'est pas directement envisageable. Un tel cas de figure se produit en particulier lorsque le nombre de données est infini. Nous considérons dans un premier temps le cadre de l'interpolation optimale dans les sous-espaces hilbertiens. Pour un problème donné, un opérateur intégral est défini à partir du noyau sous-jacent et d'une paramétrisation de l'ensemble des données basée sur un espace mesuré. La décomposition spectrale de l'opérateur est utilisée afin d'obtenir une formule de représentation pour l'interpolateur optimal et son approximation est alors rendu possible par troncature du spectre. Le choix de la mesure induit une fonction d'importance sur l'ensemble des données qui se traduit, en cas d'approximation, par une plus ou moins grande précision dans le rendu des données. Nous montrons à titre d'exemple comment cette approche peut être utilisée afin de rendre compte de contraintes de type "conditions aux limites" dans les modèles d'interpolation à noyaux. Le problème du conditionnement des processus gaussiens est également étudié dans ce contexte. Nous abordons enfin dans la dernière partie de notre manuscrit la notion de noyaux conditionnellement positifs. Nous proposons la définition générale de noyaux symétriques conditionnellement positifs relatifs à une espace de référence donné et développons la théorie des sous-espaces semi-hilbertiens leur étant associés. Nous étudions finalement la théorie de l'interpolation optimale dans cette classe d'espaces. / We propose a spectral approach for the resolution of kernel-based interpolation problems of which numerical solution can not be directly computed. Such a situation occurs in particular when the number of data is infinite. We first consider optimal interpolation in Hilbert subspaces. For a given problem, an integral operator is defined from the underlying kernel and a parameterization of the data set based on a measurable space. The spectral decomposition of the operator is used in order to obtain a representation formula for the optimal interpolator and spectral truncation allows its approximation. The choice of the measure on the parameters space introduces a hierarchy onto the data set which allows a tunable precision of the approximation. As an example, we show how this methodology can be used in order to enforce boundary conditions in kernel-based interpolation models. The Gaussian processes conditioning problem is also studied in this context. The last part of this thesis is devoted to the notion of conditionally positive kernels. We propose a general definition of symmetric conditionally positive kernels relative to a given space and exposed the associated theory of semi-Hilbert subspaces. We finally study the optimal interpolation problem in such spaces.
|
Page generated in 0.1362 seconds