• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 16
  • 12
  • 10
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 172
  • 30
  • 29
  • 23
  • 22
  • 19
  • 16
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

THE EFFECT OF FLIGHT DURATION ON ß-HYDROXYBUTYRATE CONCENTRATION IN BLOOD PLASMA OF EPTESICUS FUSCUS / PLASMA ß-HYDROXYBUTYRATE AND FLIGHT IN EPTESICUS FUSCUS

Byron, Taylor 11 June 2020 (has links)
Insectivorous bats alter relative use of metabolic substrates to match requirements of their activities, including energetically expensive flight. The “fasting while foraging” hypothesis states that the metabolic demands of flight often exceed energy intake while foraging, hence bats may metabolize fat stores (especially early in the night) to power flight with ketones, a byproduct of the normal oxidation of fatty acids. Previous studies in bats have found increases in the plasma ketone ß-hydroxybutyrate following food consumption paired with or without flight. However, no study has explored whether increases in plasma ß-hydroxybutyrate occur following flight without food consumption. We used metabolite analysis to examine changes in plasma ß-hydroxybutyrate as a function of flight duration in 2 groups (fall and spring) of captive big brown bats (Eptesicus fuscus). We fasted bats for 12 hours prior to flight (exercise treatment) or rest (control), and then collected interfemoral vein blood. Exercise activity was quantified as flight time. For the Fall group, we collected three rest samples and one flight sample. Results for the Fall group were variable; interpretation of data patterns for this group may be complicated by changes in metabolism that occur in the fall when bats physiologically prepare for hibernation. To control for seasonal effects, we tested a second group of bats in the spring, collecting two rest and three flight samples. We found a positive correlation between flight duration and levels of plasma ß-hydroxybutyrate in the Spring group, which supports the fasting while foraging hypothesis. / Thesis / Master of Science (MSc) / The “fasting while foraging” hypothesis states that the metabolic demands of flight can exceed energy intake from recently consumed prey items, so insectivorous bats may metabolize fat stores (especially early in the night) to power flight with ketones, a byproduct of the normal oxidation of fatty acids. Previous studies in bats have found increases in the plasma ketone ß-hydroxybutyrate following food consumption, but no study has explored whether increases in plasma ß-hydroxybutyrate occur following flight without food consumption. We collected and analyzed blood to examine changes in plasma ß-hydroxybutyrate following different flight durations in big brown bats. We explored both seasonal and captivity effects. To explore seasonal effects, we sampled blood from bats in the fall and the spring, times that are biologically significant to big brown bats. The spring is when bats move out of torpor, a form of hibernation, into an active state and the fall is when bats are preparing for entering into torpor. To explore captivity effects, we sampled blood from bats recently introduced to or established to captivity. Bats were fasted for 12 hours prior to flight (exercise treatment) or rest (control), and then blood was collected. We characterized exercise using flight time. We found that plasma ß-hydroxybutyrate increased after longer flight durations, which supports the fasting while foraging hypothesis.
62

An Investigation of the Microstructure and Properties of a Cryogenically Mechanically Alloyed Polycarbonate-Poly(Ether Ether Ketone) System

Martin, Julie Patricia 30 November 2001 (has links)
This work investigates processing-microstructure-property relationships of a model cryogenically mechanically alloyed polymer-polymer system: polycarbonate (PC) and poly (ether ether ketone) (PEEK). Mechanically milled and alloyed powders were characterized using a variety of techniques including microscopy and thermal analysis. Cryogenically mechanically alloyed powders processed for 10 hours were shown to have a sub-micron level two-phase microstructure. These powders were processed into testable coupons using a mini ram-injection molder; microstructure and bulk mechanical properties of the coupons were investigated as a function of mechanical alloying and injection molding parameters. Atomic force microscopy, transmission electron microscopy, and scanning transmission X-ray microscopy revealed that the intimate blending achieved during the mechanical alloying process is not retained upon post-processing using a conventional polymer processing technique. Injection molded coupons were tested in 3-point bend mode via dynamic mechanical and quasi-static mechanical testing. Results demonstrated that no improvement in energy to break, strain at failure, or failure strength was achieved in coupons made from cryogenically mechanically alloyed powders compared to those of coupons made from non-mechanically alloyed samples. / Ph. D.
63

Palladium(II)-Catalyzed Addition Reactions : Synthesis of Aryl Amidines and Aryl Ketones

Rydfjord, Jonas January 2017 (has links)
Palladium-catalyzed reactions have become one of the most important tools in modern organic chemistry due to its ability to catalyze the formation of new carbon-carbon bonds. The aim of the work presented in this thesis was to develop new palladium(II)-catalyzed addition reactions. In this work, cyanamides were investigated as a new substrate to give aryl amidines as products. The first protocol developed employed aryltrifluoroborates as the aryl partner, and the insertion of the aryl group into un-, mono-, and di-substituted cyanamides was successful for a wide variety of aryltrifluoroborates. An alternative method of generating the necessary intermediate for insertion into the cyanamide is the decarboxylative formation of aryl-palladium from aryl carboxylic acids. A protocol was developed for this reaction, but was unfortunately limited to a small number of ortho-substituted electron-rich aryl carboxylic acids. The mechanism was investigated by the means of DFT calculations and ESI-MS studies, and the rate-determining step was suggested to be the 1,2-carbopalladation based upon those results. A translation of the batch protocol to continuous-flow conditions was also demonstrated. The ideal method of generating the aryl-palladium species is by C-H bond activation, and this approach was demonstrated with indoles, giving a variety of 3-amidinoindoles as products. The mechanism was investigated by DFT calculations and a plausible catalytic cycle was proposed. A continuous-flow application of a desulfitative palladium(II)-catalyzed addition to nitriles to give ketones was developed. In addition, different reactor materials were evaluated in the microwave heated reactor cavity. Thus the reaction was shown to proceed with microwave heating in a borosilicate glass and an aluminum oxide reactor, and also in conditions mimicking conventional heating in a silicon carbide reactor. Finally, a protocol was developed for the convenient synthesis of sodium aryl sulfinates from Grignard and lithium reagents using a solid sulfur dioxide source as a safe alternative to the gas. The products of this protocol can be used as aryl-palladium precursors by a desulfitative process.
64

Crystallization Behavior, Tailored Microstructure, and Structure-Property Relationships of Poly(Ether Ketone Ketone) and Polyolefins

Pomatto, Michelle Elizabeth 08 April 2024 (has links)
This work investigates the influence of microstructure and cooling and heating rates on the physical and chemical properties of fast crystallizing polymers. The primary objectives were to 1) utilize advanced methodologies to accurately determine the fundamental thermodynamic value of equilibrium melting temperature (Tmo) for the semi-crystalline polymer poly(ether ketone ketone) (PEKK), 2) increase understanding of the influence of microstructure (random versus blocky) of functionalized semi-crystalline polymers on physical and chemical properties, and 3) understand the influence of additive manufacturing process parameters on semi-crystalline polymer crystallization and final properties. All objectives utilized the advanced characterization technique of fast scanning calorimetry (FSC) using the Mettler Toledo Flash DSC 1. The first half of this work focuses on the high-performance semi-crystalline aromatic polymer poly(ether ketone ketone) (PEKK) with a copolymerization ratio of terephthalate to isophthalate moieties (i.e., T/I ratio) of 80/20. Due to the fast heating and cooling rates of the Flash DSC, PEKK underwent melt-reorganization upon heating at slow heating rates. This discovery resulted in utilizing a Hoffman-Weeks linear extrapolation of the zero-entropy production temperature to establish a new equilibrium melting temperature of 382 oC. Additionally, a new NMR solvent, dichloroacetic acid, was discovered for PEKK, allowing for comprehensive NMR analysis of PEKK for the first time. Diphenyl acetone (DPA) was discovered as a novel, benign gelation solvent for PEKK, enabling heterogeneous gel-state bromination and sulfonation to afford blocky microstructures. The gel state functionalization process resulted in a blocky microstructure with runs of pristine crystallizable PEKK retained within the crystalline domains, and amorphous domains containing the functionalized PEKK monomers. The preservation of the pristine crystalline domains resulted in enhanced physical and chemical properties compared to the randomly functionalized analogs. Additionally, heterogeneous gel state functionalization of PEKK gels prepared from different solvents and gelation temperatures resulted in differences in crystallization behavior between blocky microstructures of the same degree of functionalization. This result demonstrates that the blocky microstructure can be tuned through controlling the starting gel morphology. The second half of this work focuses on understanding the influence of cooling and heating rates on the melting, crystal morphology, and crystallization kinetics on isotactic polypropylene (iPP), iPP-polyethylene copolymers (iPP-PE), and iPP/iPP-PE blends and using this information to gain understanding of how these polymers crystallize during the additive manufacturing processes of powder bed fusion (PBF) and material extrusion (MatEx). The crystallization kinetics of iPP, iPP-PE copolymers, and iPP/iPP-PE blends exhibited bimodal parabolic-like behavior attributed to crystallization of the mesomorphic crystal polymorph at low temperatures and the α-form crystal at high temperatures. Incorporation of non-crystallizable polyethylene fractions both covalently and blended as a secondary component, resulted in decreasing crystallization rates, inhibition of crystallization, and decreased crystallizability. Additionally, the non-isothermal crystallization behavior of these systems shows that the non-crystallizable fractions influence the crystal nucleation density and temperature at which polymorphic crystallization occurs. Utilizing in-situ IR thermography in the PBF system, the heating and cooling rates observed for a single-layer PBF print were used to mimic the PBF process by FSC. Partial melting in the printing process leads to self-seeding and increased crystallization onset temperatures upon cooling, which influences the final part melting morphology. Nucleation from surrounding powder and partially melted crystals greatly influences the crystallization kinetics and crystal morphology of the final part. Utilizing rheological experiments and process-relevant cooling rates observed in the MatEx process, the miscibility of iPP/iPP-PE blends influenced the nucleation behavior and crystallization rates, subsequently leading to differences in printed part properties. / Doctor of Philosophy / The crystalline morphology of semi-crystalline polymers depends on their microstructure and thermal history. The resultant crystalline morphology greatly affects the physical and chemical properties. In the first part of this work, the effect of microstructure on material properties is explored. Block copolymer microstructures consist of two or more blocks of distinct polymer segments covalently bonded to one another. This leads to self-organization of the components into unique structural order that would not be attainable if the polymer segments were randomly bonded together. This structural order enhances material properties; thus, block copolymers are advantageous for many applications. However, synthesis of block copolymers can be tedious and expensive. Thus, additional methodologies for block copolymer synthesis are desired. In this work blocky (i.e., statistically non-random) copolymers are synthesized through a facile post-polymerization functionalization method. These blocky copolymers result in enhanced physical and chemical properties compared to the randomly synthesized analogs. This work shows blocky functionalization of a new polymer under new post-polymerization conditions and expands upon the synthesis methodology for block copolymers. In the second part of this work, the effect of heating and cooling rates on the formation of crystals during additive manufacturing is explored. Additive manufacturing modalities of powder bed fusion and material extrusion consist of rapid heating and cooling processes, which can affect how crystals form and ultimately affect the final printed part properties. Using a technique called fast scanning calorimetry, the different heating and cooling rates that the polymer witnesses during printing can be mimicked, and the formation of crystals under these different conditions can be replicated. This mimicking analysis can be related to the printing process and be used to help guide printing processes to enhance printed part properties.
65

La stimulation de la cétogenèse chez l'humain par une supplémentation en triglycérides de moyennes chaînes

Courchesne-Loyer, Alexandre January 2011 (has links)
Résumé : Le vieillissement de la population est relié à l’augmentation de la présence de certaines maladies comme les déclins cognitifs ou les démences de type Alzheimer. Chez les personnes à risques de développer ces démences, une diminution précoce du métabolisme cérébral du glucose peut être observée avant même l’apparition des premiers symptômes. Ce déficit énergétique pourrait expliquer la cascade qui mène au développement des déclins cognitifs. Les cétones sont des molécules produites par le corps à partir de la lipolyse des acides gras qui ont déjà démontré leur efficacité comme substrat énergétique de substitution pour le cerveau. L’utilisation de triglycérides de moyennes chaînes (MCT), des acides gras facilement absorbables et oxydables, est un moyen efficace pour augmenter les cétones rapidement mais transitoirement. Notre objectif était de voir s’il était possible d’augmenter les cétones plasmatiques et de maintenir une concentration modérée sur 24 h avec une supplémentation quotidienne en MCT. Dix participants ont d’abord reçu une supplémentation de 2 semaines d’une émulsion de MCT (3 fois par jour). Leur concentration plasmatique de cétones mais aussi de glucose, de cholestérol, de triglycérides et d’acides gras libres était mesurée au début et à la fin de la supplémentation. Huit participants ont par la suite reçu une supplémentation de 4 semaines de l’émulsion de MCT (4 fois par jour). En plus des paramètres mentionnés précédemment, des mesures d’oxydation de MCT, à l’aide d’un traceur 13C-trioctanoate, d’oxydation des cétones, à l’aide d’un traceur de 13C-bêta-hydroxybutyrate ((30Hb), et des mesures de composition corporelle étaient effectuées. Dans les deux études, les analyses plasmatiques ont démontré une augmentation significative des cétones plasmatiques (jusqu’à 0,47 ± 0 ,1 5 mM), qui semblait plus soutenue lors de la deuxième étude. Aucune autre modification n’a été observée dans les analyses plasmatiques. Une diminution de l’oxydation du traceur 13C-trioctanoate dans les heures suivant la prise puis une hausse à 24 h suivant la supplémentation montre un changement dans l’utilisation des MCT, donc une plus grande conversion en cétones. Aucun changement n’a été observé avec le traceur 13C-(30Hb. Aucune variation de la composition corporelle n’a été observée. Ces études montrent la capacité des MCT à augmenter et à maintenir une concentration de cétones durant 24 h à des niveaux légers chez un adulte en santé. // Abstract : Aging leads to the development of many diseases among which is cognitive decline associated with dementia and Alzheimer's disease (AD). In populations who are at risk of developing cognitive decline, it has been noted that a marked brain glucose hypometabolism precedes the onset of other clinical symptoms such as [beta]-amyloid accumulation. This hypometabolism could therefore be responsible for the development of AD. Ketone bodies are energetic molecules that are produced by the liver following the (3-oxidation of fatty acids. They already have been showed to be able to sustain brain metabolism as the principal energy source. Medium chain triglycerides (MCT) are easily absorbed and metabolised fatty acids. They can raise plasma ketones rapidly but transiently. Our objective was to determine whether it was possible to raise and maintain a moderate plasma ketone concentration over 24 h in healthy adults. Ten participants were first given a 2 week supplementation of MCT (3 times a day). Plasma ketone, glucose, cholesterol, triglyceride and free fatty acids were measured. Another 8 participants were given a 4 week supplementation of MCT (4 times a day). In addition to the measures taken in the first project, MCT oxidation; with [indice supérieur 13] C-trioctanoate, ketone oxidation; with [indice supérieur 13] C-beta-hydroxybutyrate and body composition were measured. In both projects, plasma ketone concentration were raised (to a maximum of 0.48 ± 0.15 mM) and appeared to be more stable in the second project. All other plasma measures were unchanged. Significantly lower [indice supérieur 13] C-trioctanoate oxidation was detected during the 2 to 5 hours following the tracer absorption after the supplementation and a marked augmentation was detected 24 h following the supplementation. This indicates a shift in MCT utilization by the body from immediate energy source to ketone precursor. No changes were noted in [beta]OHb oxidation or in body composition. These studies show the ability of MCT to raise and maintain a moderate level of ketones in plasma when taken daily in healthy adults.
66

Quantum chemical studies of spectroscopy and electrochemistry of large conjugated molecular systems

Cho, Sangik 03 September 2009 (has links)
The molecular identity of the green emission of polyfluorene is investigated in the view point of the molecular interactions between modeled segments. The semi-empirical quantum methods, ZINDO/S and AM1 (AM1-CIS), are used in combination to provide reasonable explanations for experimental spectroscopic properties of monodisperse fluorene oligomers and fluorene oligomers with a central keto defect in dilute solutions. Applying the same method, the molecular interactions between model segments are found to exist and are significant. However, the spectroscopic property change from the molecular interactions is negligible. In addition, the effects of mechanical stress and multi-defects on fluorene oligomers are investigated. On the other hand, the redox mechanisms proposed for the oxidation of an amphiphilic cyanine (C8S3) J-aggregates immobilized at ITO electrode and the subsequent dehydrogenated dimmer formation during cyclic voltammetry based on analysis of absorption spectra during the process are verified with the combined semi-empirical quantum methods similar to the previous methods. The absorption spectra assigned by experiment for electrochemical species involved in the proposed mechanism show reasonable match to the theoretically estimated absorption energies of the corresponding simplified model systems. In addition, the standard reduction potentials of the fairly large molecules, C8S3 monomer and its dehydrogenated dimer, are pursued with quantum mechanical calculations. The free energy difference between the oxidized and reduced states of the target systems is decomposed to electronic energy, solvation energy and temperature-dependent free energies terms. Based on AM1 ground state geometries and with the corresponding temperature dependent free energies, the electronic energies and the solvation energies are each evaluated by two different methods. The electronic energies are calculated with AM1 method and DFT calculation and, also, the solvation energies are obtained based on the atomic partial charges from AM1 and DFT wavefunctions with continuum dielectric solvent approximation. The four calculation schemes from the combinations of the electronic and solvation energy estimation methods are tested with the redox compounds with various molecular weights and the estimations are compared with the corresponding experimental redox potentials. The relative redox potentials between two different redox systems are found to be reasonably estimated with the four calculation schemes. / text
67

THE UNDERLYING MECHANISM(S) OF FASTING INDUCED NEUROPROTECTION AFTER MODERATE TRAUMATIC BRAIN INJURY

Davis, Laurie Michelle Helene 01 January 2008 (has links)
Traumatic brain injury (TBI) is becoming a national epidemic, as it accounts for 1.5 million cases each year. This disorder affects primarily the young population and elderly. Currently, there is no treatment for TBI, which means that ~2% of the U.S. population is currently living with prolonged neurological damage and dysfunction. Recently, there have been many studies showing that TBI negatively impacts mitochondrial function. It has been proposed that in order to save the cell from destruction mitochondrial function must be preserved. The ketogenic diet, originally designed to mimic fasting physiology, is effective in treating epilepsy. Therefore, we have used fasting as a post injury treatment and attempted to elucidate its underlying mechanism. 24 hours of fasting after a moderate TBI increased tissue sparing, cognitive recovery, improved mitochondrial function, and decreased mitochondrial biomarkers of injury. Fasting results in hypoglycemia, the production of ketones, and the upregulation of free fatty acids (FFA). As such, we investigated the neuroprotective effect of hypoglycemia in the absence of fasting through insulin administration. Insulin administration was not neuroprotective and increased mortality in some treatment groups. However, ketone administration resulted in increased tissue sparing. Also, reduced reactive oxygen species (ROS) production, increased the efficiency of NADH utilization, and increased respiratory function. FFAs and uncoupling proteins (UCP) have been implicated in an endogenously regulated anti-ROS mechanism. FFAs of various chain lengths and saturation were screened for their ability to activate UCP mediated mitochondrial respiration and attenuate ROS production. We also measured FFA levels in serum, brain, and CSF after a 24 hour fast. We also used UCP2 transgenic overexpressing and knockout mice in our CCI injury model, which showed UCP2 overexpression increased tissue sparing, however UCP2 deficient mice did not show a decrease in tissue sparing, compared with their wild type littermates. Together our results indicate that post injury initiated fasting is neuroprotective and that this treatment is able to preserve mitochondrial function. Our work also indicates ketones and UCPs may be working together to preserve mitochondrial and cellular function in a concerted mechanism, and that this cooperative system is the underlying mechanism of fasting induced neuroprotection.
68

Avanços e desafios na biocatálise dos compostos orgânicos de silício / Advances and challenges in biocatalysis of organosilicon compounds

Souza, Dayvson José Palmeira de 07 November 2014 (has links)
Aliando reações enzimáticas a compostos orgânicos de silício, objetivou-se explorar o potencial destes substratos em reações biocatalisadas. A intenção era ampliar o escopo de substratos e desbravar novas transformações. Inicialmente foram abordados os trabalhos relativos ao uso de hidrolases em reações envolvendo organossilanos, cujo uso de lipases foi o foco da nossa contribuição. Nela, a resolução cinética enzimática (RCE) de alcoóis quirais benzílicos contendo silício e outros heteroátomos (fósforo e estanho) foi explorada e transesterificações enantiosseletivas eficientes foram alcançadas, em que tanto os produtos acetilados e os alcoóis remanescentes foram obtidos em excelentes excessos enantioméricos (e.e. >99% em todos os casos). Considerações sobre a relação estrutura/atividade das reações catalisadas por lipase foram feitas, e foi possível perceber que os compostos contendo silício reagiram mais rapidamente que aqueles contedo fósforo e estanho. Em seguida, numa extensão natural da RCE, buscou-se realizar a resolução cinética dinâmica (RCD). Diversos experimentos de RCD foram realizados utilizando lipase e dois tipos de catalisadores de racemização diferentes: complexos de rutênio e uma resina de troca catiônica. Embora tenham sido encontrados indícios de que a racemização utilizando os catalisadores de rutênio estava acontecendo no meio reacional, a inativação do catalisador durante o processo foi uma dificuldade que, nos estudos realizados, não foi possível contornar. Foi então que uma resina de troca catiônica foi utilizada como alternativa de racemização, e dependendo do substrato utilizado foi possível realizar eficientes RCDs (rendimento até 93% e e.e. até 96%) através de uma esterificação enzimática empregando um acilante de cadeia longa. O último trabalho empregando hidrolases foi na acilação de silanóis. A partir dos resultados interessantes envolvendo a acilação de um silanol arílico (conversão de 75% para o acetoxissilano derivado usando a CAL-B), tentou-se acilar um silanol benzílico racêmico e, embora o substrato tenha sido acetilado enzimaticamente (conversão de até 47% para o acetoxissilano derivado nas condições estudadas), a reação se deu sem enantiosseletividade. Nas reações envolvendo oxidorredutases, tanto mono-oxigenases quanto enzimas provenientes da bactéria Arthrobacter sp., foram empregadas como biocatalisadores. Na tentativa de se realizar a oxidação da ligação C-Si utilizando BVMOs (Baeyer-Villiger mono-oxigenases), foi possível concluir que a instabilidade dos silanos e alcoxissilanos nas reações em meio aquoso poderia configurar um entrave no desenvolvimento da metodologia. Por outro lado, evidências de oxidação enzimática da ligação Si-H foram observadas em dois substratos arílicos, que podem servir de direcionamento para futuros projetos envolvendo este tema. Por fim, células íntegras da bactéria Arthrobacter sp. foram utilizadas em reações de desracemização aeróbica (R)-seletiva de alcoóis e redução anaeróbica (S)-seletiva de cetonas, ambas utilizando substratos contendo silício, fósforo, estanho e boro. Transformações com elevada enantiosseletividade foram encontradas, provando a versatilidade da Arthrobacter sp. em mediar reações enantiocomplementares. / By combining both enzymatic reactions and organosilicon compounds, we aimed to explore the potential of these substrates in biocatalytic reactions. The main goal was to expand the scope of substrates and breakthrough new transformations. Initially the study was based on the use of hydrolases in reactions involving organosilanes, in which lipases were the focus of our contribution. Thus, enzymatic kinetic resolution (EKR) of chiral benzylic alcohols containing silicon and other heteroatoms (phosphorus and tin) was explored and efficient enantioselective transesterifications were achieved, in which both acetylated products and remaining alcohols were obtained in excellent enantiomeric excesses (e.e. > 99% in all cases). Considerations about the structure/activity relationship of lipase-catalyzed reactions were done, and it was found out that silicon-containing compounds can react faster than those phosphorus- or tin-containing analogues. Then, an extension of EKR was the dynamic kinetic resolution (DKR). Several experiments were performed using lipase and different racemization catalysts: ruthenium complexes and a cation exchange resin. Although racemization by ruthenium catalysts have been found, in our studies inactivation of the catalyst during the process was a problem that was not possible to be solved. A cation exchange resin was used in racemization, and depending on the substrate it was possible to perform efficient DKRs (yield up to 93% and e.e. up to 96%) via an enzymatic esterification using an acylating agent with long chain. Another work with hydrolases was the enzymatic acylation of silanols. From the interesting results involving the acylation of an aryl-silanol (75% conversion to the acetoxy-silane derivative, by CAL-B), the acylation of a racemic benzyl-silanol was performed and although the substrate has been successfuly acetylated by a series of lipases (up to 47% conversion to the acetoxy-silane derivative under the conditions studied), the reaction occurred without any enantioselectivity. In reactions involving oxidoreductases, both mono-oxygenases and enzymes from the bacterium Arthrobacter sp., were used as biocatalysts. In an attempt to carry out the oxidation of the C-Si bond using BVMOs, it was found out that the instability of the substrates in aqueous media could set an obstacle in the development of the methodology. Moreover, evidence of enzymatic oxidation of Si-H bond were observed for two aryl substrates, which can serve as guidance for future projects involving the topic. Finally, whole cells of the bacterium Arthrobacter sp. were used for (R)- selective deracemization of alcohols and (S)-selective reduction of ketones, both using silicon-, phosphorus-, tin- and boron-containing substrates. Transformations with high enantioselectivity were achieved, showing the versatility of Arthrobacter sp. in mediating enantiocomplementary reactions.
69

Avanços e desafios na biocatálise dos compostos orgânicos de silício / Advances and challenges in biocatalysis of organosilicon compounds

Dayvson José Palmeira de Souza 07 November 2014 (has links)
Aliando reações enzimáticas a compostos orgânicos de silício, objetivou-se explorar o potencial destes substratos em reações biocatalisadas. A intenção era ampliar o escopo de substratos e desbravar novas transformações. Inicialmente foram abordados os trabalhos relativos ao uso de hidrolases em reações envolvendo organossilanos, cujo uso de lipases foi o foco da nossa contribuição. Nela, a resolução cinética enzimática (RCE) de alcoóis quirais benzílicos contendo silício e outros heteroátomos (fósforo e estanho) foi explorada e transesterificações enantiosseletivas eficientes foram alcançadas, em que tanto os produtos acetilados e os alcoóis remanescentes foram obtidos em excelentes excessos enantioméricos (e.e. >99% em todos os casos). Considerações sobre a relação estrutura/atividade das reações catalisadas por lipase foram feitas, e foi possível perceber que os compostos contendo silício reagiram mais rapidamente que aqueles contedo fósforo e estanho. Em seguida, numa extensão natural da RCE, buscou-se realizar a resolução cinética dinâmica (RCD). Diversos experimentos de RCD foram realizados utilizando lipase e dois tipos de catalisadores de racemização diferentes: complexos de rutênio e uma resina de troca catiônica. Embora tenham sido encontrados indícios de que a racemização utilizando os catalisadores de rutênio estava acontecendo no meio reacional, a inativação do catalisador durante o processo foi uma dificuldade que, nos estudos realizados, não foi possível contornar. Foi então que uma resina de troca catiônica foi utilizada como alternativa de racemização, e dependendo do substrato utilizado foi possível realizar eficientes RCDs (rendimento até 93% e e.e. até 96%) através de uma esterificação enzimática empregando um acilante de cadeia longa. O último trabalho empregando hidrolases foi na acilação de silanóis. A partir dos resultados interessantes envolvendo a acilação de um silanol arílico (conversão de 75% para o acetoxissilano derivado usando a CAL-B), tentou-se acilar um silanol benzílico racêmico e, embora o substrato tenha sido acetilado enzimaticamente (conversão de até 47% para o acetoxissilano derivado nas condições estudadas), a reação se deu sem enantiosseletividade. Nas reações envolvendo oxidorredutases, tanto mono-oxigenases quanto enzimas provenientes da bactéria Arthrobacter sp., foram empregadas como biocatalisadores. Na tentativa de se realizar a oxidação da ligação C-Si utilizando BVMOs (Baeyer-Villiger mono-oxigenases), foi possível concluir que a instabilidade dos silanos e alcoxissilanos nas reações em meio aquoso poderia configurar um entrave no desenvolvimento da metodologia. Por outro lado, evidências de oxidação enzimática da ligação Si-H foram observadas em dois substratos arílicos, que podem servir de direcionamento para futuros projetos envolvendo este tema. Por fim, células íntegras da bactéria Arthrobacter sp. foram utilizadas em reações de desracemização aeróbica (R)-seletiva de alcoóis e redução anaeróbica (S)-seletiva de cetonas, ambas utilizando substratos contendo silício, fósforo, estanho e boro. Transformações com elevada enantiosseletividade foram encontradas, provando a versatilidade da Arthrobacter sp. em mediar reações enantiocomplementares. / By combining both enzymatic reactions and organosilicon compounds, we aimed to explore the potential of these substrates in biocatalytic reactions. The main goal was to expand the scope of substrates and breakthrough new transformations. Initially the study was based on the use of hydrolases in reactions involving organosilanes, in which lipases were the focus of our contribution. Thus, enzymatic kinetic resolution (EKR) of chiral benzylic alcohols containing silicon and other heteroatoms (phosphorus and tin) was explored and efficient enantioselective transesterifications were achieved, in which both acetylated products and remaining alcohols were obtained in excellent enantiomeric excesses (e.e. > 99% in all cases). Considerations about the structure/activity relationship of lipase-catalyzed reactions were done, and it was found out that silicon-containing compounds can react faster than those phosphorus- or tin-containing analogues. Then, an extension of EKR was the dynamic kinetic resolution (DKR). Several experiments were performed using lipase and different racemization catalysts: ruthenium complexes and a cation exchange resin. Although racemization by ruthenium catalysts have been found, in our studies inactivation of the catalyst during the process was a problem that was not possible to be solved. A cation exchange resin was used in racemization, and depending on the substrate it was possible to perform efficient DKRs (yield up to 93% and e.e. up to 96%) via an enzymatic esterification using an acylating agent with long chain. Another work with hydrolases was the enzymatic acylation of silanols. From the interesting results involving the acylation of an aryl-silanol (75% conversion to the acetoxy-silane derivative, by CAL-B), the acylation of a racemic benzyl-silanol was performed and although the substrate has been successfuly acetylated by a series of lipases (up to 47% conversion to the acetoxy-silane derivative under the conditions studied), the reaction occurred without any enantioselectivity. In reactions involving oxidoreductases, both mono-oxygenases and enzymes from the bacterium Arthrobacter sp., were used as biocatalysts. In an attempt to carry out the oxidation of the C-Si bond using BVMOs, it was found out that the instability of the substrates in aqueous media could set an obstacle in the development of the methodology. Moreover, evidence of enzymatic oxidation of Si-H bond were observed for two aryl substrates, which can serve as guidance for future projects involving the topic. Finally, whole cells of the bacterium Arthrobacter sp. were used for (R)- selective deracemization of alcohols and (S)-selective reduction of ketones, both using silicon-, phosphorus-, tin- and boron-containing substrates. Transformations with high enantioselectivity were achieved, showing the versatility of Arthrobacter sp. in mediating enantiocomplementary reactions.
70

Ketogenic diet impacts Blood-Brain Barrier physiology : implications for Alzheimers's disease / Impact du régime cétogène sur la physiologie de la barrière hémato-encéphalique : importance pour la maladie d'Alzheimer

Corsi, Mariangela 22 February 2018 (has links)
Compte tenu de l'absence de traitement pharmacologique efficace contre la maladie d'Alzheimer (MA), le développement d'approches thérapeutiques alternatives telles que le régime cétogène (« ketogenic diet » : KD) pourrait être envisagé. Le KD est un régime riche en graisses, basé sur la production de corps cétoniques (« ketone nodies » : KB) dans le sang. En raison des effets bénéfiques du KD sur le système nerveux central et de l'absence de données publiées sur la barrière hémato-encéphalique (BHE), nous avons utilisé une approche in vivo / in vitro pour étudier l'effet du KD et des KB sur la BHE. Pour l'étude in vivo, le sang de souris 129Sv a été récolté afin d’effectuer le dosage du beta-hydroxybutyrate et du glucose. Les capillaires cérébraux ont été isolés de cortex des souris, et des RT-qPCR ont été effectuées pour évaluer l'expression de l'ARNm des transporteurs / récepteurs impliqués dans la synthèse et le transport de KB, de glucose et du peptide bêta amyloïde. Les analyses transcriptionnelles ont été réalisées également dans un modèle in vitro de BHE, composé de cellules endothéliales dérivées de cellules souches hématopoïétiques (BLECs) en état de cétose. Après confirmation de l'intégrité des jonctions cellulaires des BLECs, Enfin, des expériences de transport de peptides beta amyloïde fluorescents après traitement avec les KBs ont été réalisées in vitro. Nos résultats montrent que les KBs modulent la physiologie de la BBB et l'expression de certains transporteurs et récepteurs du peptide bêta amyloïde, renforcent ainsi notre motivation à décrypter les mécanismes moléculaires et cellulaires au niveau vasculaire et plus précisément au niveau de la BHE. / Given the current absence of an effective pharmacologic treatment for Alzheimer’s disease (AD), the development of alternative therapeutic approaches (such as the ketogenic diet, KD) might be considered. The KD is a low-carbohydrate, high-fat diet based on the production of ketone bodies (KBs) in the blood. In view of the KD’s beneficial effects on the central nervous system and the lack of published data on the blood brain barrier (BBB), we used an in vivo/in vitro approach to investigate the effect of the KD and KBs on the BBB. For the in vivo study, blood from 129Sv mice was assayed for beta-hydroxybutyrate and glucose dosage. Brain capillaries were isolated from mouse cortices, and RT-qPCR assays were used to evaluate the mRNA expression of transporters/receptors involved in the synthesis and transport of KBs, glucose and beta-amyloid peptide. The mRNA assays were also performed in an in vitro BBB model, based on brain-like endothelial cells (BLECs). After a ketotic state had been established and the BLECs’ integrity had been confirmed, we evaluated the mRNA expression of KB-, glucose- and amyloid-beta-related genes. Lastly, the transport of fluorescently labelled beta-amyloid peptide across the BBB was studied after treatment with KBs. Our results showed that KBs modulate the physiology of the BBB by regulating the expression of certain beta-amyloid peptide transporters/receptors and amyloid peptide-synthesizing enzymes. These data suggest that it is possible to modulate key molecular players in beta-amyloid peptide transport and synthesis at the BBB, and thus open up new perspectives for studying KB-related therapeutic approaches.

Page generated in 0.0602 seconds