• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 22
  • 10
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 99
  • 22
  • 18
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Besant revisted : the Fincastle site (DIOx-5) and archaeological cultures on the northwestern plains, 2500 B.P.-1250 B.P.

Varsakis, Irene, University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
An assemblage of distinctive projectile points from the Fincastle site (DlOx-5), Alberta at c. 2500 B.P. instigated an analysis of archaeological cultures on the Northern Plains during the late Middle Prehistoric Period. Archaeological sites included in this study are from the Pelican Lake Phase, the Besant Phase, the Sandy Creek Complex, a previously Unnamed Complex, and the Plains Woodland at approximately 2500 – 1250 B.P. A projectile point analysis was conducted on assemblages from Fincastle, EbPi-63, EgPn-111, Kenney (DjPk-1), Leavitt (24LT22), Muhlbach (FbPf-1), and Smith-Swainson (FeOw-1) sites. As part of this study, nearly 40 metric and non-metric attributes were examined in approximately 500 projectile points from these seven sites. Research findings indicate that two coeval groups existed in Alberta, identified as the Kenney and Sonota subphases of the Besant Phase. Two additional subphases are hypothesized for the Besant Phase in Wyoming and Montana. / xix, 379 leaves ; 29 cm.
72

Pharmacometric Models for Antibacterial Agents to Improve Dosing Strategies

Nielsen, Elisabet I January 2011 (has links)
Antibiotics are among the most commonly prescribed drugs. Although the majority of these drugs were developed several decades ago, optimal dosage (dose, dosing interval and treatment duration) have still not been well defined. This thesis focuses on the development and evaluation of pharmacometric models that can be used as tools in the establishment of improved dosing strategies for novel and already clinically available antibacterial drugs. Infectious diseases are common causes of death in preterm and term newborn infants. A population pharmacokinetic (PK) model for gentamicin was developed based on data from a prospective study. Body-weight and age (gestational and post-natal age) were found to be major factors contributing to variability in gentamicin clearance and therefore important patient characteristics to consider for improved dosing regimens. A semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) model was also developed, to characterize in vitro bacterial growth and killing kinetics following exposure to six antibacterial drugs, representing a broad selection of mechanisms of action and PK as well as PD characteristics. The model performed well in describing a wide range of static and dynamic drug exposures and was easily applied to other bacterial strains and antibiotics. It is, therefore, likely to find application in early drug development programs. Dosing of antibiotics is usually based on summary endpoints such as the PK/PD indices. Predictions based on the PKPD model showed that the commonly used PK/PD indices were well identified for all investigated drugs, supporting that models based on in vitro data can be predictive of antibacterial effects observed in vivo. However, the PK/PD indices were sensitive to the study conditions and were not always consistent between patient populations. The PK/PD indices may therefore extrapolate poorly across sub-populations. A semi-mechanistic modeling approach, utilizing the type of models described here, may thus have higher predictive value in a dose optimization tailored to specific patient populations.
73

Introducing Mr Perky : subverting the fantasy trope of immortality in contemporary speculative fiction

Ryan, Jennifer Joan January 2009 (has links)
The Tide Lords series of fantasy novels set out to examine the issue of immortality. Its purpose was to look at the desirability of immortality, specifically why people actively seek it. It was meant to examine the practicality of immortality, specifically — having got there, what does one do to pass the time with eternity to fill? I also wished to examine the notion of true immortality — immortals who could not be killed. What I did not anticipate when embarking upon this series, and what did not become apparent until after the series had been sold to two major publishing houses in Australia and the US, was the strength of the immortality tropes. This series was intended to fly in the face of these tropes, but confronted with the reality of such a work, the Australian publishers baulked at the ideas presented, requesting the series be re-written with the tropes taken into consideration. They wanted immortals who could die, mortals who wanted to be immortal. And a hero with a sense of humour. This exegesis aims to explore where these tropes originated. It will also discuss the ways I negotiated a way around the tropes, and was eventually able to please the publishers by appearing to adhere to the tropes, while still staying true to the story I wanted to tell. As such, this discussion is, in part, an analysis of how an author negotiates the tensions around writing within a genre while trying to innovate within it.
74

Chov ryb v rybnících zatížených komunálními vodami / Fish farming in ponds exposed to municipal water management

CHMELICKÝ, Petr January 2017 (has links)
In August 2014 a total die-off of fish stock occurred in Záhumenní velký, a pond with a surface area of 5.85 ha. The investigation of the fish kill revealed that the Jabkenice WWTP located above the pond area had discharged water of inappropriate quality (N-NH4+ -99.3 mg/l-1) into the pond. This event resulted in the monitoring of physical and chemical parameters of water quality, zooplankton sampling and measuring of growth dynamics of fish stock by using control reduction fishing. The survey conducted in 2015 studied three different ponds (Ohrada 0.85 ha, Záhumenní velký 5.85 ha and Vlkava 22.1 ha), located in the fertile lowland areas around Mladá Boleslav where pre-cleaned sewage water from the sewage treatment plants flows. The water samples taken both at the outflow of the waste water treatment plant and in the pond were analysed in an accredited laboratory. The following parameters were examined: BOD5, TN, CODCr, ammoniacal nitrogen, TP, nitrites, nitrates and others.
75

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
76

Modelagem pk/pd das fluoroquinolonas levofloxacino e moxifloxacino visando o tratamento da prostatite / PK/PD modeling of the fluoroquinolones levofloxacin and moxifloxacin aiming at the treatment of prostatitis

Hurtado, Felipe Kellermann January 2014 (has links)
Objetivo: O objetivo geral deste trabalho foi desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito bactericida in vitro das fluoroquinolonas levofloxacino (LEV) e moxifloxacino (MXF)contra Escherichia coli, baseando-se em dados in vivo de concentração livre prostática. Métodos: Ratos Wistar machos foram utilizados nos experimentos in vivo para determinação da farmacocinética plasmática e prostática do LEV (7 mg/kg) e MXF (6 e 12 mg/kg) após dose i.v. bolus. As concentrações livres prostáticas foram determinadas por microdiálise. A coleta das amostras de plasma e dialisado de tecido foi realizada simultaneamente nos animais previamente anestesiados com uretano para determinação do fator de distribuição tecidual (fT). Para a quantificação do LEV e MXF nas amostras de plasma e dialisado, métodos analíticos foram validados. Análise farmacocinética não-compartimental e modelagem compartimental dos dados foram realizadas utilizando o WinNonlin® e NONMEM® v. 6, respectivamente. Os experimentos de farmacodinâmica in vitro foram executados utilizando sistema composto de caldo de cultura Mueller-Hinton no qual a bactéria teste (Escherichia coli ATCC 25922) foi exposta a concentrações constantes e flutuantes dos antimicrobianos. O número de colônias bacterianas viáveis (CFU/mL) foi determinado em função do tempo e utilizado como parâmetro farmacodinâmico para construção das curvas de morte bacteriana (time-kill curves). Nos experimentos de time-kill curves estáticos, concentrações baseadas em múltiplos da MIC na faixa de 0.008–2 mg/L foram utilizadas, enquanto que no dinâmico a meia-vida de eliminação do LEV em humanos foi simulada no sistema in vitro através de diluição constante do caldo de cultura. Resultados e Discussão: Um método analítico por HPLC-fluorescência foi desenvolvido e validado para a quantificação do MXF nas amostras biológicas. Método analítico também foi validado para quantificação do LEV nas amostras. Os perfis plasmáticos e teciduais das duas fluoroquinolonas foram modelados simultaneamente utilizando modelo de três compartimentos considerando transporte linear (difusão passiva) e saturável (cinética de Michaelis-Menten). O modelo, que foi o mais adequado para descrever os dados experimentais, sugere a presença de transportadores de efluxo na próstata. A penetração prostática média do MXF foi significativamente maior que a do LEV (fT = 1.24 vs. 0.78) e foi independente da dose. Em ratos, não foi observada diferença na meia-vida plasmática média entre LEV (5.0 h) e MXF (4.9 h), embora a meia-vida tecidual foi ligeiramente maior para o MXF (3.3 vs. 2.3 h). Usando a abordagem populacional de modelagem PK/PD, modelo de Emax sigmoidal foi utilizado para descrever o efeito das duas quinolonas frente a E. coli tanto nos experimentos de concentração estática quanto dinâmica. A comparação dos parâmetros PK/PD estimados mostrou que o MXF apresenta potência superior ao LEV contra a cepa através da comparação dos valores de EC50, embora ambos tenham apresentado eficácia comparável (Emax de 1.85 e 1.83 h-1 para MXF e LEV, respectivamente). Para o LEV, os esquemas posológicos de 500 mg q12 h e 1000 mg q24 h apresentaram maior eficácia no período de 24 h, pois promoveram a inibição completa do recrescimento bacteriano observado nos outros dois regimes de dose testados. Conclusões: A correlação dos dados de farmacocinéticain vivo com os experimentos de farmacodinâmica in vitro, seguida da construção do modelo PK/PD de efeito máximo, possibilitou explorar a relação do efeito antimicrobiano em função do tempo baseada em concentrações livres esperadas na prostatite. / Objective: The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the in vitro bactericidal effect of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MXF) against Escherichia coli based on free concentrations in prostate tissue measured in vivo. Methods: Pharmacokinetic experiments were conducted in male Wistar rats for the determination of plasma and free prostate concentrations of LEV (7 mg/kg) and MXF (6 and 12 mg/kg) after i.v. bolus administration. Blood and tissue dialysate samples were collected simultaneously in the group of rats previously anesthetized with urethane to determine the tissue distribution factor (fT). To quantify MXF and LEV in plasma and dialysate samples obtained after administration of the quinolones, analytical methods based on HPLC-fluorescence were developed and validated accordingly. Non-compartmental analysis and compartmental PK modeling of the data was performed in WinNonlin® and NONMEM® v. 6, respectively. The in vitro pharmacodynamic experiments were executed by using a system composed of Mueller-Hinton growth medium in which the test bacterial strain (Escherichia coli ATCC 25922) was exposed to constant and fluctuating antimicrobial concentrations. The number of viable colony-forming units (CFU/mL) was determined as a function of time and used as the pharmacodynamic parameter for construction of bacterial time-kill curves. In the static time-kill curves, concentrations in the range of 0.008-2 mg/L were tested based on multiples of the MIC, whereas in the dynamic time-kill curves the half-life of LEV in humans was simulated in the in vitro system by stepwise dilution of the growth medium. Results and Discussion: An HPLC-fluorescence method was developed and fully validated to quantify MXF in biological fluids. A method was also validated to determine LEV in the samples. Plasma and prostate concentrations of both drugs were simultaneously fitted using a three-compartment model considering linear (passive diffusion) and saturable transport (Michaelis-Menten kinetics), suggesting the presence of efflux transporters in the prostate. The average tissue penetration of MXF in the prostate was significantly higher than that of LEV (fT = 1.24 vs. 0.78) and was independent of the dose. In rats, differences in average plasma half-life between plasma LEV (5.0 h) and MXF (4.9 h) were not observed, even though the tissue half-life was slightly longer for MXF (3.3 vs. 2.3 h). Using a population PK/PD modeling approach, a sigmoidal Emax model was used to describe the effect of the two quinolones against E. coli both in the static as well as in the dynamic time-kill curves. Comparison of the PK/PD parameter estimates showed that the in vitro potency of MXF is higher than LEV against the strain tested as shown by EC50 values, but both presented equivalent efficacy (Emax of 1.85 and 1.83 h-1 for MXF and LEV, respectively). For LEV, the dosing regimens of 500 mg q12 h and 1,000 mg q24 h showed overall greater efficacy over the 24 h period as they resulted in complete inhibition of bacterial regrowth observed in the other two dosing regimens tested. Conclusions: The correlation of in vivo pharmacokinetic data with in vitro pharmacodynamic experiments, followed by the development of an Emax PK/PD model, allowed determining the relationship between the bactericidal effect as a function of time based on free tissue concentrations expected in the site of infection.
77

Kill Zone Analysis for a Bank-to-Turn Missile-Target Engagement

January 2016 (has links)
abstract: With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and visualize them. The high fidelity environment is used to validate miss distance analysis with the results presented in relevant GNC textbooks and to examine how the kill zone varies with critical engagement parameters; e.g. initial engagement altitude, missile Mach, and missile maximum acceleration. A ray-based binary search algorithm is used to estimate the kill zone region; i.e. the set of initial target starting conditions such that it will be "killed". The results show what is expected. The kill zone increases with larger initial missile Mach and maximum acceleration & decreases with higher engagement altitude and higher target Mach. The environment is based on (1) a 6DOF bank-to-turn (BTT) missile, (2) a full aerodynamic-stability derivative look up tables ranging over Mach number, angle of attack and sideslip angle (3) a standard atmosphere model, (4) actuator dynamics for each of the four cruciform fins, (5) seeker dynamics, (6) a nonlinear autopilot, (7) a guidance system with three guidance algorithms (i.e. PNG, optimal, differential game theory), (8) a 3DOF target model with three maneuverability models (i.e. constant speed, Shelton Turn & Climb, Riggs-Vergaz Turn & Dive). Each of the subsystems are described within the research. The environment contains linearization, model analysis and control design features. A gain scheduled nonlinear BTT missile autopilot is presented here. Autopilot got sluggish as missile altitude increased and got aggressive as missile mach increased. In short, the environment is shown to be a very powerful tool for conducting missile-target engagement research - a research that could address multiple missiles and advanced targets. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2016
78

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
79

Modelagem pk/pd das fluoroquinolonas levofloxacino e moxifloxacino visando o tratamento da prostatite / PK/PD modeling of the fluoroquinolones levofloxacin and moxifloxacin aiming at the treatment of prostatitis

Hurtado, Felipe Kellermann January 2014 (has links)
Objetivo: O objetivo geral deste trabalho foi desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito bactericida in vitro das fluoroquinolonas levofloxacino (LEV) e moxifloxacino (MXF)contra Escherichia coli, baseando-se em dados in vivo de concentração livre prostática. Métodos: Ratos Wistar machos foram utilizados nos experimentos in vivo para determinação da farmacocinética plasmática e prostática do LEV (7 mg/kg) e MXF (6 e 12 mg/kg) após dose i.v. bolus. As concentrações livres prostáticas foram determinadas por microdiálise. A coleta das amostras de plasma e dialisado de tecido foi realizada simultaneamente nos animais previamente anestesiados com uretano para determinação do fator de distribuição tecidual (fT). Para a quantificação do LEV e MXF nas amostras de plasma e dialisado, métodos analíticos foram validados. Análise farmacocinética não-compartimental e modelagem compartimental dos dados foram realizadas utilizando o WinNonlin® e NONMEM® v. 6, respectivamente. Os experimentos de farmacodinâmica in vitro foram executados utilizando sistema composto de caldo de cultura Mueller-Hinton no qual a bactéria teste (Escherichia coli ATCC 25922) foi exposta a concentrações constantes e flutuantes dos antimicrobianos. O número de colônias bacterianas viáveis (CFU/mL) foi determinado em função do tempo e utilizado como parâmetro farmacodinâmico para construção das curvas de morte bacteriana (time-kill curves). Nos experimentos de time-kill curves estáticos, concentrações baseadas em múltiplos da MIC na faixa de 0.008–2 mg/L foram utilizadas, enquanto que no dinâmico a meia-vida de eliminação do LEV em humanos foi simulada no sistema in vitro através de diluição constante do caldo de cultura. Resultados e Discussão: Um método analítico por HPLC-fluorescência foi desenvolvido e validado para a quantificação do MXF nas amostras biológicas. Método analítico também foi validado para quantificação do LEV nas amostras. Os perfis plasmáticos e teciduais das duas fluoroquinolonas foram modelados simultaneamente utilizando modelo de três compartimentos considerando transporte linear (difusão passiva) e saturável (cinética de Michaelis-Menten). O modelo, que foi o mais adequado para descrever os dados experimentais, sugere a presença de transportadores de efluxo na próstata. A penetração prostática média do MXF foi significativamente maior que a do LEV (fT = 1.24 vs. 0.78) e foi independente da dose. Em ratos, não foi observada diferença na meia-vida plasmática média entre LEV (5.0 h) e MXF (4.9 h), embora a meia-vida tecidual foi ligeiramente maior para o MXF (3.3 vs. 2.3 h). Usando a abordagem populacional de modelagem PK/PD, modelo de Emax sigmoidal foi utilizado para descrever o efeito das duas quinolonas frente a E. coli tanto nos experimentos de concentração estática quanto dinâmica. A comparação dos parâmetros PK/PD estimados mostrou que o MXF apresenta potência superior ao LEV contra a cepa através da comparação dos valores de EC50, embora ambos tenham apresentado eficácia comparável (Emax de 1.85 e 1.83 h-1 para MXF e LEV, respectivamente). Para o LEV, os esquemas posológicos de 500 mg q12 h e 1000 mg q24 h apresentaram maior eficácia no período de 24 h, pois promoveram a inibição completa do recrescimento bacteriano observado nos outros dois regimes de dose testados. Conclusões: A correlação dos dados de farmacocinéticain vivo com os experimentos de farmacodinâmica in vitro, seguida da construção do modelo PK/PD de efeito máximo, possibilitou explorar a relação do efeito antimicrobiano em função do tempo baseada em concentrações livres esperadas na prostatite. / Objective: The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the in vitro bactericidal effect of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MXF) against Escherichia coli based on free concentrations in prostate tissue measured in vivo. Methods: Pharmacokinetic experiments were conducted in male Wistar rats for the determination of plasma and free prostate concentrations of LEV (7 mg/kg) and MXF (6 and 12 mg/kg) after i.v. bolus administration. Blood and tissue dialysate samples were collected simultaneously in the group of rats previously anesthetized with urethane to determine the tissue distribution factor (fT). To quantify MXF and LEV in plasma and dialysate samples obtained after administration of the quinolones, analytical methods based on HPLC-fluorescence were developed and validated accordingly. Non-compartmental analysis and compartmental PK modeling of the data was performed in WinNonlin® and NONMEM® v. 6, respectively. The in vitro pharmacodynamic experiments were executed by using a system composed of Mueller-Hinton growth medium in which the test bacterial strain (Escherichia coli ATCC 25922) was exposed to constant and fluctuating antimicrobial concentrations. The number of viable colony-forming units (CFU/mL) was determined as a function of time and used as the pharmacodynamic parameter for construction of bacterial time-kill curves. In the static time-kill curves, concentrations in the range of 0.008-2 mg/L were tested based on multiples of the MIC, whereas in the dynamic time-kill curves the half-life of LEV in humans was simulated in the in vitro system by stepwise dilution of the growth medium. Results and Discussion: An HPLC-fluorescence method was developed and fully validated to quantify MXF in biological fluids. A method was also validated to determine LEV in the samples. Plasma and prostate concentrations of both drugs were simultaneously fitted using a three-compartment model considering linear (passive diffusion) and saturable transport (Michaelis-Menten kinetics), suggesting the presence of efflux transporters in the prostate. The average tissue penetration of MXF in the prostate was significantly higher than that of LEV (fT = 1.24 vs. 0.78) and was independent of the dose. In rats, differences in average plasma half-life between plasma LEV (5.0 h) and MXF (4.9 h) were not observed, even though the tissue half-life was slightly longer for MXF (3.3 vs. 2.3 h). Using a population PK/PD modeling approach, a sigmoidal Emax model was used to describe the effect of the two quinolones against E. coli both in the static as well as in the dynamic time-kill curves. Comparison of the PK/PD parameter estimates showed that the in vitro potency of MXF is higher than LEV against the strain tested as shown by EC50 values, but both presented equivalent efficacy (Emax of 1.85 and 1.83 h-1 for MXF and LEV, respectively). For LEV, the dosing regimens of 500 mg q12 h and 1,000 mg q24 h showed overall greater efficacy over the 24 h period as they resulted in complete inhibition of bacterial regrowth observed in the other two dosing regimens tested. Conclusions: The correlation of in vivo pharmacokinetic data with in vitro pharmacodynamic experiments, followed by the development of an Emax PK/PD model, allowed determining the relationship between the bactericidal effect as a function of time based on free tissue concentrations expected in the site of infection.
80

Modelagem pk/pd das fluoroquinolonas levofloxacino e moxifloxacino visando o tratamento da prostatite / PK/PD modeling of the fluoroquinolones levofloxacin and moxifloxacin aiming at the treatment of prostatitis

Hurtado, Felipe Kellermann January 2014 (has links)
Objetivo: O objetivo geral deste trabalho foi desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito bactericida in vitro das fluoroquinolonas levofloxacino (LEV) e moxifloxacino (MXF)contra Escherichia coli, baseando-se em dados in vivo de concentração livre prostática. Métodos: Ratos Wistar machos foram utilizados nos experimentos in vivo para determinação da farmacocinética plasmática e prostática do LEV (7 mg/kg) e MXF (6 e 12 mg/kg) após dose i.v. bolus. As concentrações livres prostáticas foram determinadas por microdiálise. A coleta das amostras de plasma e dialisado de tecido foi realizada simultaneamente nos animais previamente anestesiados com uretano para determinação do fator de distribuição tecidual (fT). Para a quantificação do LEV e MXF nas amostras de plasma e dialisado, métodos analíticos foram validados. Análise farmacocinética não-compartimental e modelagem compartimental dos dados foram realizadas utilizando o WinNonlin® e NONMEM® v. 6, respectivamente. Os experimentos de farmacodinâmica in vitro foram executados utilizando sistema composto de caldo de cultura Mueller-Hinton no qual a bactéria teste (Escherichia coli ATCC 25922) foi exposta a concentrações constantes e flutuantes dos antimicrobianos. O número de colônias bacterianas viáveis (CFU/mL) foi determinado em função do tempo e utilizado como parâmetro farmacodinâmico para construção das curvas de morte bacteriana (time-kill curves). Nos experimentos de time-kill curves estáticos, concentrações baseadas em múltiplos da MIC na faixa de 0.008–2 mg/L foram utilizadas, enquanto que no dinâmico a meia-vida de eliminação do LEV em humanos foi simulada no sistema in vitro através de diluição constante do caldo de cultura. Resultados e Discussão: Um método analítico por HPLC-fluorescência foi desenvolvido e validado para a quantificação do MXF nas amostras biológicas. Método analítico também foi validado para quantificação do LEV nas amostras. Os perfis plasmáticos e teciduais das duas fluoroquinolonas foram modelados simultaneamente utilizando modelo de três compartimentos considerando transporte linear (difusão passiva) e saturável (cinética de Michaelis-Menten). O modelo, que foi o mais adequado para descrever os dados experimentais, sugere a presença de transportadores de efluxo na próstata. A penetração prostática média do MXF foi significativamente maior que a do LEV (fT = 1.24 vs. 0.78) e foi independente da dose. Em ratos, não foi observada diferença na meia-vida plasmática média entre LEV (5.0 h) e MXF (4.9 h), embora a meia-vida tecidual foi ligeiramente maior para o MXF (3.3 vs. 2.3 h). Usando a abordagem populacional de modelagem PK/PD, modelo de Emax sigmoidal foi utilizado para descrever o efeito das duas quinolonas frente a E. coli tanto nos experimentos de concentração estática quanto dinâmica. A comparação dos parâmetros PK/PD estimados mostrou que o MXF apresenta potência superior ao LEV contra a cepa através da comparação dos valores de EC50, embora ambos tenham apresentado eficácia comparável (Emax de 1.85 e 1.83 h-1 para MXF e LEV, respectivamente). Para o LEV, os esquemas posológicos de 500 mg q12 h e 1000 mg q24 h apresentaram maior eficácia no período de 24 h, pois promoveram a inibição completa do recrescimento bacteriano observado nos outros dois regimes de dose testados. Conclusões: A correlação dos dados de farmacocinéticain vivo com os experimentos de farmacodinâmica in vitro, seguida da construção do modelo PK/PD de efeito máximo, possibilitou explorar a relação do efeito antimicrobiano em função do tempo baseada em concentrações livres esperadas na prostatite. / Objective: The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the in vitro bactericidal effect of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MXF) against Escherichia coli based on free concentrations in prostate tissue measured in vivo. Methods: Pharmacokinetic experiments were conducted in male Wistar rats for the determination of plasma and free prostate concentrations of LEV (7 mg/kg) and MXF (6 and 12 mg/kg) after i.v. bolus administration. Blood and tissue dialysate samples were collected simultaneously in the group of rats previously anesthetized with urethane to determine the tissue distribution factor (fT). To quantify MXF and LEV in plasma and dialysate samples obtained after administration of the quinolones, analytical methods based on HPLC-fluorescence were developed and validated accordingly. Non-compartmental analysis and compartmental PK modeling of the data was performed in WinNonlin® and NONMEM® v. 6, respectively. The in vitro pharmacodynamic experiments were executed by using a system composed of Mueller-Hinton growth medium in which the test bacterial strain (Escherichia coli ATCC 25922) was exposed to constant and fluctuating antimicrobial concentrations. The number of viable colony-forming units (CFU/mL) was determined as a function of time and used as the pharmacodynamic parameter for construction of bacterial time-kill curves. In the static time-kill curves, concentrations in the range of 0.008-2 mg/L were tested based on multiples of the MIC, whereas in the dynamic time-kill curves the half-life of LEV in humans was simulated in the in vitro system by stepwise dilution of the growth medium. Results and Discussion: An HPLC-fluorescence method was developed and fully validated to quantify MXF in biological fluids. A method was also validated to determine LEV in the samples. Plasma and prostate concentrations of both drugs were simultaneously fitted using a three-compartment model considering linear (passive diffusion) and saturable transport (Michaelis-Menten kinetics), suggesting the presence of efflux transporters in the prostate. The average tissue penetration of MXF in the prostate was significantly higher than that of LEV (fT = 1.24 vs. 0.78) and was independent of the dose. In rats, differences in average plasma half-life between plasma LEV (5.0 h) and MXF (4.9 h) were not observed, even though the tissue half-life was slightly longer for MXF (3.3 vs. 2.3 h). Using a population PK/PD modeling approach, a sigmoidal Emax model was used to describe the effect of the two quinolones against E. coli both in the static as well as in the dynamic time-kill curves. Comparison of the PK/PD parameter estimates showed that the in vitro potency of MXF is higher than LEV against the strain tested as shown by EC50 values, but both presented equivalent efficacy (Emax of 1.85 and 1.83 h-1 for MXF and LEV, respectively). For LEV, the dosing regimens of 500 mg q12 h and 1,000 mg q24 h showed overall greater efficacy over the 24 h period as they resulted in complete inhibition of bacterial regrowth observed in the other two dosing regimens tested. Conclusions: The correlation of in vivo pharmacokinetic data with in vitro pharmacodynamic experiments, followed by the development of an Emax PK/PD model, allowed determining the relationship between the bactericidal effect as a function of time based on free tissue concentrations expected in the site of infection.

Page generated in 0.0728 seconds