361 |
Příprava a charakterizace katalytické domény lidské proteinkinasy ASK1. / Preparation and characterization of the catalytic domain of human protein kinase ASK1.Petrvalská, Olívia January 2014 (has links)
Protein kinase ASK1 (apoptosis signal-regulating kinase 1) is a member of the mitogen- activated protein kinase kinase kinase (MAP3K) family and plays a crucial role in immune and stress responses. Since the increased activity of ASK1 has been linked to the development of several diseases including cancer, cardiovascular and neurodegenerative diseases, this enzyme is a promising target for therapeutical intervention in these pathologies. The molecule of ASK1 consists of 1374 amino acid residues, but catalytic activity possesses only a kinase domain located approximately in the middle of the molecule. The activity of ASK1 is regulated by interactions with various proteins including the 14-3-3 protein. This protein recognizes a phosphorylated motif around Ser966 at the C-terminus of the catalytic domain of ASK1. This binding interaction inhibits ASK1 through unknown mechanism. ASK1 under stress conditions, such as oxidative stress, is dephosphorylated at Ser966 and the 14-3-3 protein dissociates. This dissociation is then one of the factors that lead to the activation of ASK1. The aim of this diploma thesis was to prepare a complex of the catalytic domain of ASK1 with the 14-3-3 protein for subsequent structural studies. Both proteins were expressed in E. coli cells and successfully purified. In...
|
362 |
Studium interakcí ASK1 kinasy s thioredoxinem. / Study of interaction between ASK1 kinase and thioredoxin.Koláčková, Kateřina January 2014 (has links)
MAP kinase signaling cascade plays an important role in the cellular response to various stress stimuli from the external environment. This signaling cascade is divided into three levels: MAP kinase kinase kinases (MAP3K) phosphorylate and thus activate MAP kinase kinases (MAP2K) and those subsequently phosphorylate and thus activate MAP kinase (MAPK) pathway, which regulates many cellular functions such as apoptosis, cell differentiation and morphogenesis. One of the important MAP3K is protein kinase ASK1 (Apoptosis signal-regulating kinase 1), which is an important regulator of cellular immune and stress responses. Given that the increased activity of ASK1 is related to the development of serious diseases such as cancer, cardiovascular and neurodegenerative diseases, ASK1 is an interesting target in the pharmacy in the development of new drugs. Human ASK1 consists of 1374 amino acids and is divided into three domains: a central Ser/Thr catalytic domain and two coiled-coil domains, of which the first is located at the N- and the second at the C-terminus of the molecule of this protein kinase. ASK1 is regulated by its binding partners, which include a small cellular redox protein thioredoxin (Trx-1), which binds to the N-terminal part of ASK1. Trx-1 is a potent antioxidant and so it protects cells...
|
363 |
Untersuchung der Rolle der ERK-Dimerisierung bei der ERK1/2- vermittelten Proliferation von Tumorzellen / Investigation of the role of ERK dimerization in the ERK1/2-mediated proliferation of tumor cellsGruse, Tamara January 2020 (has links) (PDF)
Bei vielen Erkrankungen wie z.B. Herzhypertrophie, Diabetes und Entzündungen spielt die Raf-MEK-ERK-Signalkaskade eine wichtige Rolle. ERK1/2 ist in vielen zellulären Prozessen, u.a. Proliferation, Differenzierung, Wachstum, Hypertrophie und Apoptose involviert. Auch in der Tumorentstehung besitzt dieser MAPK-Signalweg eine signifikante Funktion, da er bei ca. 50% aller Krebsarten deutlich aktiviert ist. Ziel dieser Arbeit war es, die Rolle einer neu entdeckten Phosphorylierungsstelle an Threonin188 an ERK2 bei der Entstehung und der möglichen Therapie von Tumoren zu erarbeiten. Dafür wurde ein Myc-ERK2309-357-Peptid verwendet, das 2013 in der Arbeitsgruppe Lorenz entwickelt wurde. Myc-ERK2309-357 zeigte in bisher unveröffentlichten Versuchen, dass es direkt an ERK2 bindet, eine Dimerisierung von ERK1/2 hemmen und eine vermehrte Lokalisation von ERK2 im Zellkern verhindern kann. Im Rahmen dieses Projekts konnten wir belegen, dass mit Hilfe des Myc-ERK2309-357-Peptids die Tumorzellproliferation von verschiedenen Krebszelllinien (Caco-2, SCC68, PC/1-1 und PC/13-1) um 60-80% vermindert werden konnte. Des Weiteren konnten wir zeigen, dass Myc-ERK2309-357 keinen Einfluss auf die Phosphorylierung von ERK1/2 am TEY-Motiv besitzt. Die Aktivierung von ERK1/2 durch die Kinasen MEK1/2 wird somit nicht beeinflusst und die zytosolischen ERK-Funktionen, wie z.B. der anti-apoptotische Effekt, würden somit bestehen bleiben. Außerdem fanden wir heraus, dass Myc-ERK2309-357 im Vergleich zu den MEK-Inhibitoren U0126 und PD98059 und verglichen mit dem EGF-Rezeptor-Antikörper Cetuximab die Proliferation signifikant besser hemmt. / The Raf-MEK-ERK signaling cascade plays an important role in many diseases, such as cardiac hypertrophy, diabetes and inflammation. ERK1/2 is involved in many cellular processes, i.a. proliferation, differentiation, growth, hypertrophy and apoptosis. This MAPK signaling pathway also has a significant function in tumorigenesis because it is clearly activated in about 50% of all cancers. The aim of this work was to investigate the role of a newly discovered phosphorylation site on threonine188 in ERK2 in the genesis and possible therapy of tumors. For this, a Myc- ERK2309-357 peptide was used, which was developed in the research group Lorenz in 2013. It has previously been shown that Myc-ERK2309-357 binds directly to ERK2, inhibits ERK1/2 dimerization, and prevents increased localization of ERK2 in the nucleus. In this project we demonstrated that the Myc-ERK2309-357 peptide reduces the tumor cell proliferation of various cancer cell lines (Caco-2, SCC68, PC / 1-1 and PC / 13-1) by 60-80%. Furthermore, we could show that Myc-ERK2309-357 has no influence on the phosphorylation of ERK1/2 on the TEY motif. The activation of ERK1/2 by the kinases MEK1/2 is thus unaffected and the cytosolic ERK functions, e.g. the anti-apoptotic effect, would thus persist. In addition, we discovered that Myc-ERK2309-357 inhibits proliferation of the tumor cells significantly better compared to the MEK inhibitors U0126 and PD98059 and compared to the EGFR antibody Cetuximab.
|
364 |
Hemmung pathologischer kardialer Hypertrophie über das Dimer-Interface von ERK1/2 / Inhibition of pathological cardiac hypertrophy by the dimer interface of ERK1/2Kramer, Sofia January 2021 (has links) (PDF)
Die extrazellulär Signal-regulierten Kinasen 1 und 2 (ERK1/2) spielen eine zentrale Rolle bei der Vermittlung kardialer Hypertrophie und dem Zellüberleben. Hypertrophe Stimuli aktivieren ERK1/2, triggern deren Dimerisierung und in der Folge die ERK188-Autophosphorylierung. Diese neu entdeckte Autophosphorylierung ist eine Voraussetzung für den nukleären Import von ERK1/2 und führt zum Entstehen pathologischer kardialer Hypertrophie. Da das Dimer Interface von ERK eine mögliche Zielstruktur darstellt, um selektiv die nukleären Signalwege von ERK zu unterbrechen, wurde untersucht, ob man mit Hemmung der ERK-Dimerisierung eine therapeutische Möglichkeit hat, um pathologische kardiale Hypertrophie zu verhindern. Dazu wurden verschiedene ERK2 Mutanten und Peptide generiert, um die ERK-Dimerisierung zu verhindern. Die Effekte dieser Konstrukte auf die ERK-Dimerisierung und den Kernimport wurden in verschiedenen Zelltypen mittels Fluoreszenzmikroskopie, Co-Immunopräzipitationen und Duolink proximity ligation assays getestet. Es konnte gezeigt werden, dass die Peptide effektiv die ERK-ERK Interaktion nach Stimulation mit Phenylephrin und/oder Carbachol verhindern. Zusätzlich reduzierten die Peptide ERKT188-Phosphorylierung und in der Folge den ERK-Import in den Nukleus und Kardiomyozytenhypertrophie. Normale ERK-Aktivierung wurde jedoch durch die Peptide nicht verhindert. Insgesamt konnte gezeigt werden, dass das ERK-Dimer Interface eine wertvolle Zielstruktur ist, mit dem man nukleäre ERK1/2 Signalwege selektiv unterbrechen und damit effektiv Kardiomyozytenwachstum reduzieren kann, ohne gleichzeitig das Zellüberleben zu gefährden. / The extracellular signal-regulated kinases 1 and 2 (ERK1/2) have a central role in cardiac hypertrophy and cell survival. Hypertrophic stimuli activate ERK1/2, trigger ERK dimerization and subsequently ERKT188-autophosphorylation. This newly discovered autophosphorylation is a prerequisite for nuclear ERK1/2 translocation and leads to the development of pathological cardiac hypertrophy. As the ERK dimer interface is a potential target to selectively interfere with nuclear ERK1/2 signaling, we investigated whether the interference with ERK dimerization may serve as a therapeutic strategy to prevent pathological cardiac hypertrophy. For this, we generated ERK2 mutants and peptide constructs that interfere with ERK dimerization. These constructs were evaluated in various cell types by their effects on nuclear ERK translocation and dimerization by fluorescence microcopy, co-immunoprecipitation and Duolink proximity ligation assays. We showed that the peptides indeed prevented ERK-ERK interaction in response to phenylephrine and/or carbachol stimulation. In addition, the peptides prevented ERKT188-phosphorylation and interfered with all ERK1/2 effects that are associated with ERKT188-phosphorylation e.g. nuclear ERK translocation and cardiomyocyte hypertrophy. Interestingly, the peptide did not inhibit the general activation of ERK1/2. These data indicate that the ERK dimer interface is a valuable target for selective inhibition of nuclear ERK1/2 signaling, that is able to effectively attenuate ERK1/2 mediated cardiomyocyte growth but without impairing cell survival.
|
365 |
Characterization of the role of MAP Kinases in stress induced responsesSiodmak, Anna E. 04 1900 (has links)
Biotic stresses such as infection by bacteria negatively affect plant growth and
pose a severe threat to human food production. Improving our understanding of
the immune systems of plants should help ensure food supplies in the years
ahead.
Bacterial infections induce Pattern-Triggered Immunity (PTI), a process in which
plants perceive bacterial molecules and trigger an immune response. Mitogen-
Activated Protein Kinase (MAPK) cascades are key players in this immunity
process. Since the MAP Kinases (MPKs) 3/4/6 are mainly responsible for flg22-
dependent phosphorylation events, we sought to find out how oxidation of MPK4
affects its ability to respond to stresses. Previous studies have shown varying
kinase activity of MPK4 upon oxidation. Therefore, this project aims to provide an
insight into the oxidative defense signaling mechanism of A. thaliana by
investigating the role of MPK4 Cysteine181 in vitro and in vivo. Analysis of
oxidation-mimicking as well as oxidation-dead mutants gave first hints that
Cysteine181, which is located in the MPK4 substrate binding pocket, is a highly
important regulatory residue of oxidative stress signaling by affecting MPK4 kinase
activity and the activation of MPK3 and MPK6. Binding studies revealed that those
events are due to sterical hindrance within the binding pocket of MPK4 and the
blockage of upstream activator binding.
The second part of this study characterizes compositional and post-translational
changes of plant ribosomes during pathogen infection. Ribosomal proteins
selectively participate in the formation of polysomes under different environmental
and developmental conditions. However, the function of these changes still
remains elusive. The current research project attempts to understand the plant
ribosomal changes that occur upon exposure to bacterial pathogens. To observe
ribosomal changes, A. thaliana plants were treated with a pathogen associated
molecular pattern (PAMP), flg22. Mass spectrometric analysis identified
quantitative changes of PAMP-induced ribosomal proteins in polysomes as well as
changes in post-translational modifications. Spatial simulations of ribosomes
revealed specific regions within the ribosomes to be PTI specific. This study
demonstrates that MPK6 contributes to modification of P-stalk composition and
phosphorylation status. The MPK6 mediated modifications may affect translation
and in combination indicate a mechanism of PTI-related translational control.
|
366 |
The effect of protein kinase C and Beta-catenin inhibitors on uveal melanoma cellsGowda, Asha 22 January 2016 (has links)
PURPOSE: Uveal melanoma (UM) is the most common intraocular malignancy in adults with an incidence of six per one million individuals each year. Globe conserving treatments are currently the standard of care, but unfortunately, despite successful local control, a substantial mortality risk exists due to eventual emergence of distant metastasis, which is invariably lethal. There is therefore an unmet need for novel, effective, targeted therapies for metastatic UM. Somatic mutations in the G-protein α subunits, Gαq and Gα, are present in a mutually exclusive pattern in approximately 80% of UMs, and they abolish the GTPase activity, resulting in a constitutively active protein. We have previously demonstrated that GNAQ-mutant (GNAQ^mt) UMs are addicted to the oncogenic effect of the mutant GNAQ protein and dissected the GNAQ pathway in an attempt to identify druggable targets. Our findings that the mutant GNAQ protein activates the PKC/PKD axis, which activates beta-catenin (β-Catenin), prompted us to investigate the role of PKC and β-Catenin in GNAQ^mt UM.
EXPERIMENTAL DESIGN: The GNAQ^mt UM cell lines Mel202 and OMM1.3 were treated with either the PKC inhibitor bisindolylmaleimide I (BIM) alone, the Wnt/β-Catenin inhibitors FH535 or cardamonin alone, the Wnt/β-Catenin activator Wnt-3a alone, or siRNAs for β-Catenin in combination with BIM, and their viability was assessed with the MTT assay. Levels of β-Catenin, phosphorylated AKT, ERK1/2, caspase 3 and LC3BII were assessed with western blotting. β-Catenin mRNA levels were assessed with microarray analysis and RT-PCR.
RESULTS: GNAQ^mt UM cells are very sensitive to PKC inhibition and respond with a decrease in cell viability that involves autophagy and cleavage and translocation of LC3BII in autophagosomes, but not caspase activation. PKC inhibition results in the upregulation of β-Catenin protein, but not mRNA levels, through a post-translational mechanism that involved the phosphorylation and activation of AKT, but not ERK1/2. β-Catenin inhibition by either small molecule inhibitors or siRNA resulted in a dose-dependent increase of cell proliferation, whereas β-Catenin activation by Wnt-3a had the opposite effects, resulting in a decrease in cell viability.
CONCLUTIONS: Our study demonstrates that PKC is a mediator of the oncogenic effect of mutant Gα protein in UM through the Wnt-3/β-Catenin signaling pathway. These results open exciting opportunities for the development of personalized targeted therapies for UM in a genotype-dependent fashion.
|
367 |
Centrosome integrity as a determinant of replication stressTayeh, Zainab 16 January 2020 (has links)
No description available.
|
368 |
Integrin-linked Kinase (ILK) expression in moderately differentiated human oesophageal squamous carcinoma cell lines: A growth factor modulation, activity and link to adhesionDriver, Glenn Alan 19 May 2008 (has links)
Abstract
Integrin-linked Kinase (ILK) is an integrin-associated protein kinase, which regulates growth factor-signalling pathways and cell-ECM adhesion events. Abrogated ILK expression or activity has been implicated in contributing to oncogenic transformation. We examined the role played by ILK in growth factor-stimulated and integrin signalling events in five human oesophageal squamous cell carcinoma cell lines (HOSCCs), known to overexpress the EGF receptor. Western blot analysis revealed the presence of ILK (59kDa) in all the moderately differentiated HOSCC lines. ILK1 was confirmed as being the predominant isoform. Densitometrically analysed Western blots showed that, per unit of protein, ILK is expressed uniformly across the cell lines under standard culture conditions. Following EGF (10 ng/ml) and TGFβ1 (1 ng/ml) treatment, ILK expression increased in all five HOSCCs. Indirect immunofluorescence microscopy showed the majority of ILK to localise at a cytoplasmic/nuclear level, with a proportion of ILK localising at the membrane, which resembled the distribution pattern of the β3 integrin subunit. This membranal distribution most likely follows that of the adhesion plaques although lesser, and variable, amounts were also identified throughout the cytoplasm. The functionality of the ILK1 kinase domain was demonstrated using myelin basic protein (MBP)-based kinase assays. EGF and TGFβ1 treatment produced an increase in ILK activity in the WHCO3 cell line of 3.5 fold, but a decrease in activity in the other cell lines, which are suggested to involve the actions of PTEN. The identification of nuclear ILK was surprising, and the mechanism for nuclear ILK localisation was suggested to involve a caveolae-associated protein, caveolin-1. Cell adhesion assays revealed that KP-392-mediated inhibition of ILK resulted in a nonsignificant reduction in cell adhesion to collagen and fibronectin. These data provide distinctive evidence for the influence of growth factors on ILK expression, but a duality in the effect on ILK activity. This apparent dichotomy is noteworthy and may be of particular relevance in HOSCC. It is further suggested that KP-392-induced ILK inhibition destabilises the αβ integrin heterodimer and that PI3K acts upstream of ILK-mediated cell adhesion events in HOSCCs. This suggests that ILK mediates integrin associated processes in human oesophageal SCC cell lines.
|
369 |
Phylogenetic, Epigenetic, and Biochemical Analysis of Testis-Specific Serine KinasesBrassard, Laura M 01 January 2011 (has links) (PDF)
The Testis Specific Serine Kinases (Tssks) are a family of proteins that show testis and sperm-specific expression. Members of this family are most conserved among mammals, however there are homologs in vertebrates like birds and amphibians, chordates, and other invertebrates like insects and cnidarians. This specific expression suggests that these kinases are highly regulated. Analysis of murine and human Tssk1, Tssk2, and Tssk6 sequences show that these genes are comprised of one exon each, suggesting they are retrotransposons. The expression of these genes shows their importance, since many retrotransposons are silenced due to the foreign nature of the DNA, and knock-out mouse models have shown that these kinases are required for fertility. Understanding the properties of these kinases not only expands our scientific knowledge, but also lends itself to understanding fertility issues in men as well as being a contraceptive target. We looked at an epigenetic regulation factor, DNA methylation at CpG dinucleotides, to see if this caused the testis-specific gene expression we saw. Tssk2 and preliminary results from Tssk1 showed that there is no differential methylation at CpG dinucleotides or between tissues. Preliminary results for Tssk6 did show one site that may be differentially methylated, thus the tissue specific expression. We then started looking further into biochemically characterizing TSSK1 and TSSK2 to determine functionally relevant sites and new substrates. Understanding how these kinases function in sperm is relevant in our understanding in the fertility field and poses new targets for developing contraceptives.
|
370 |
Molekulare und funktionelle Charakterisierung der Serin/Threonin-Proteinkinase Stk und -Proteinphosphatase Stp von \(Staphylococcus\) \(aureus\) / Molecular and functional characterization of the serine/threonine protein kinase Stk and Protein phosphatase Stp of \(Staphylococcus\) \(aureus\)Jarick, Marcel January 2020 (has links) (PDF)
Staphylococcus aureus ist ein Kommensale, der die menschliche Haut und Schleimhaut der Nase und des Rachens besiedelt. Der Keim verursacht aufgrund zahlreicher Virulenzfaktoren leichte aber auch schwere Infektionen wie Pneumonie, Endokarditis oder Sepsis. Die Behandlung von S. aureus-Infektionen gestaltet sich heutzutage schwierig, da der Keim Resistenzen gegen verschiedenste Antibiotika ausgebildet hat. Zur Bekämpfung dieser Resistenzen werden neue Antibiotika benötigt, die u.a. mit der Zellphysiologie und der Zellwandwandsynthese der Bakterien interferieren.
Die Zellphysiologie und Zellwandsynthese wird abhängig von der Wachstumsphase und Umwelt-einflüssen in den Bakterien streng reguliert. Neben den Zweikomponentensystemen sind Serin/Threonin-Proteinkinasen und -Phosphatasen wesentliche Sensoren und Regulatoren der Bakterien. Durch Phosphorylierung und Dephosphorylierung bewirken diese beiden Systeme eine Hemmung oder Aktivierung der entsprechenden Zielproteine. Dadurch kann sich die Bakterienzelle an innere und äußere Reize anpassen. In dieser Arbeit wurde die konservierte Serin/Threonin-Proteinkinase Stk und die Serin/Threonin-Phosphatase Stp von S. aureus untersucht. Die beiden Proteine Stk und Stp haben einen großen Einfluss auf die Signalweiterleitung, den zentralen Metabolismus, die Stressantwort, die Antibiotikaresistenz und die Virulenz von S. aureus.
Im ersten Teil dieser Arbeit wird dargelegt, dass Stk und Stp in der bakteriellen Membran lokalisiert sind, dort miteinander interagieren und antagonistisch Zielproteine phosphorylieren bzw. dephospho-rylieren. Die Deletion der Phosphatase Stp bewirkt, dass zahlreiche Proteine in der Zelle permanent phosphoryliert und daher vermutlich nur noch eingeschränkt funktionstüchtig sind. Die ausbleibende Dephosphorylierung der Proteine in der stp-Mutante hat einen dramatischen Effekt auf die Zellwand-synthese und die Virulenz von S. aureus. So hat die stp-Mutante eine verdickte Zellwand und ist weniger virulent als die stk-Mutante und der Wildtypstamm. Im Rahmen dieser Arbeit wird erstmals eine Erklärung präsentiert, die die strukturellen Besonderheiten von Stk und deren Auswirkung auf die Zellwandsynthese zusammenführt: In der stp-Mutante akkumulieren Zellwandvorläufer in der Zelle, da vermutlich die entsprechenden Zellwandsyntheseproteine durch Stk-vermittelte Phosphorylierung gehemmt werden. Die Proteine FemXAB nehmen eine zentrale Rolle in der Zellwandsynthese ein, indem sie die Pentaglycin-Interpeptidbrücke des Zellwandvorläufers Pentaglycin-Lipid II syntheti-sieren. Stk wird durch die Bindung seiner extrazellulären Domänen an Pentaglycin-Lipid II aktiviert. In der vorliegenden Arbeit konnte FemX als in vitro Substrat von Stk und Stp identifiziert werden. Die permanente Phosphorylierung von FemX in der stp-Mutante führt zur verminderten Synthese der Pentaglycin-Brücken am Lipid II und infolgedessen zum Einbau von unvollständigen Muropeptiden in den neuen Peptidoglycanstrang. Diese strukturelle Veränderung führt zur Verdickung der Zellwand und folglich zur verminderten Empfindlichkeit gegenüber der Glycyl-Glycinpeptidase Lysostaphin. Neben FemX interagiert Stk mit weiteren Zellwandsyntheseproteinen wie FemAB und einigen Zellteilungsproteinen. Diese Ergebnisse verdeutlichen, dass Stk das Vorkommen seines extrazellulären Liganden Lipid II detektiert und dementsprechend die Zellwandsynthese über FemX reguliert.
Im zweiten Teil der Arbeit wurde anhand verschiedener Omics-Techniken die stk-, stp- und stk/stp-Mutante im Vergleich zum S. aureus NewmanHG Wildtyp charakterisiert. Dabei zeigten sich teilweise große Unterschiede zwischen der stp-Mutante und den anderen Stämmen. Mit diesen Unter-suchungen konnten Ergebnisse aus anderen Studien bestätigt und mit weiteren Daten untermauert werden. So lässt sich die verminderte Virulenz der stp-Mutante mit der reduzierten Expression und Sekretion von Toxinen wie Hämolysinen und Leukozidinen erklären. Dies führt zu einer verminderten Hämolyse von Erythrozyten und einer verminderten Immunantwort gegen diese Toxine im Infektions-versuch. Stk und Stp phosphorylieren bzw. dephosphorylieren Transkriptionsfaktoren und Antwort-regulatoren von Zweikomponentensystemen, was zu der veränderten Expression und Sekretion der Virulenzfaktoren führt. Die Analyse der Mutanten offenbart, dass Stk ein negativer und Stp ein positiver Regulator der Virulenz in S. aureus ist. Außerdem regulieren Stk und Stp zentrale Aspekte des Metabolismus in S. aureus. So ist die Konzentration an Nukleotidtriphosphaten in der stp-Mutante reduziert, was auf eine verminderte Expression der Gene der Pyrimidinsynthese zurückzuführen ist. Anhand dieser Ergebnisse wird deutlich, dass Stk und Stp wesentliche Aspekte der Zellphysiologie wie die Zellwandsynthese, den zentralen Metabolismus und die Virulenz von S. aureus regulieren. / Staphylococcus aureus is a commensal that inhabits the human skin and mucosa. S. aureus causes a large variety of nosocomial and community-acquired infections. Nowadays, it is difficult to treat S. aureus infections because this bacterium has acquired resistance to multiple drugs. Therefore, there is a need for new antimicrobial drugs against S. aureus. The most promising strategy to combat antibiotic resistance is to find novel antibiotics which interfere with the cell physiology and cell wall synthesis pathway.
The cell physiology and cell wall synthesis is tightly regulated depending on the bacterial growth phase and environmental influences. In addition to the two-component systems, serine/threonine protein kinases are essential sensors and regulators of bacteria. By phosphorylation and dephosphorylation, these systems cause inhibition or activation of the corresponding target proteins. This allows the bacterial cell to adapt to internal and external stimuli. In this work, the conserved serine/threonine protein kinase Stk and the phosphatase Stp in S. aureus were investigated. The two proteins Stk and Stp influence signal transduction, central metabolism, stress response, antibiotic resistance and virulence of S. aureus.
In the first part of this work it is shown that Stk and Stp are localized in the bacterial membrane, where they interact with each other and phosphorylate or dephosphorylate target proteins antagonistically. The deletion of the phosphatase Stp leads to numerous proteins in the cell being permanently phosphorylated, which renders them partially unfunctional. The lack of protein dephosphorylation in the stp mutant has a dramatic effect on cell wall synthesis and virulence of S. aureus. Thus, the stp mutant has a thickened cell wall and is less virulent than the stk mutant and the wild-type strain. This work brings together the structural characteristics of Stk and their effect on cell wall synthesis for the first time. In the stp mutant, cell wall precursors accumulate in the cell, presumably because the corresponding cell wall synthesis proteins are inhibited by Stk-mediated phosphorylation. The proteins FemXAB play a key role in cell wall synthesis by synthesizing the pentaglycine interpeptide bridge of the final cell wall precursor pentaglycine lipid II. The pentaglycine lipid II is bound by the extracellular domains of Stk, thereby activating Stk. In the present work, FemX was identified as an in vitro substrate of Stk and Stp. The permanent phosphorylation of FemX in the stp mutant leads to inhibited synthesis of the pentaglycine bridges on the lipid II and consequently to the incorporation of incomplete muropeptides into the new peptidoglycan strand. This structural change leads to thickening of the cell wall and consequently reduced sensitivity to the glycyl-glycine peptidase lysostaphin. In addition to FemX, Stk interacts with other cell wall synthesis proteins such as FemAB and some cell division proteins. These results illustrate that Stk detects the presence of its extracellular ligand lipid II. This leads to an inhibition of FemX and a downregulation of the cell wall synthesis pathway.
In the second part of this work, the stk, stp and stk/stp mutants were characterized by different omics- techniques in comparison to the S. aureus NewmanHG wild-type. There were some major differences between the stp mutant and the other strains. With these investigations, results from other studies were confirmed and substantiated with further data. Thus, the reduced virulence of the stp mutant can be explained by the reduced expression and secretion of toxins such as hemolysins and leukocidines. This leads to a reduced hemolysis of erythrocytes and a reduced immune response to these toxins in the infection experiment. Stk and Stp phosphorylate or dephosphorylate transcription factors and response regulators of two-component systems resulting in altered expression and secretion of virulence factors. Analysis of the mutants reveals that Stk is a negative and Stp is a positive regulator of virulence in S. aureus. In addition, Stk and Stp regulate central aspects of S. aureus metabolism. Thus, the concentration of nucleotide triphosphates in the stp mutant is reduced, which is due to a reduced expression of the genes of pyrimidine synthesis. From these results it becomes clear that Stk and Stp regulate essential aspects of cell physiology such as cell wall synthesis, central and virulence in S. aureus. This study of the function of Stk and Stp contributes significantly to the understanding of regulatory processes by phosphorylation in the bacterial cell.
|
Page generated in 0.0419 seconds