1 |
Towards practical implementation of computational solution of the Kinematic -wave Model for simulating traffic-flow scenariosKumar, Nishant 15 November 2004 (has links)
The Kinematic-wave model is one of the models proposed to simulate vehicular traffic. It has not received widespread use because of poor understanding of associated interface conditions and early use of incorrect numerical schemes used. This thesis analyzes mathematically correct boundary and interface conditions in the context of the Godunov method as the numerical scheme for the simulation software created. This thesis simulates a set of scenarios originally proposed by Ross, to verify the validity of simulation. The results of the simulation are compared against the corresponding results of Ross, and against intuitive expectation of the behavior of actual traffic under the scenarios. Our results tend either to agree with or improve upon those reported by Ross, who used alternate models.
|
2 |
Towards practical implementation of computational solution of the Kinematic -wave Model for simulating traffic-flow scenariosKumar, Nishant 15 November 2004 (has links)
The Kinematic-wave model is one of the models proposed to simulate vehicular traffic. It has not received widespread use because of poor understanding of associated interface conditions and early use of incorrect numerical schemes used. This thesis analyzes mathematically correct boundary and interface conditions in the context of the Godunov method as the numerical scheme for the simulation software created. This thesis simulates a set of scenarios originally proposed by Ross, to verify the validity of simulation. The results of the simulation are compared against the corresponding results of Ross, and against intuitive expectation of the behavior of actual traffic under the scenarios. Our results tend either to agree with or improve upon those reported by Ross, who used alternate models.
|
3 |
Kinematic wave modelling of surface runoff quantity and quality for small urban catchments in SydneyCheah, Chin Hong, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Extensive research has been undertaken to improve the robustness of runoff quantity predictions for urban catchments. However, equally robust predictions for runoff quality have yet to be attained. Past studies addressing this issue have typically been confined to the use of simple conceptual or empirical models which forgo the tedious steps of providing a physical representation of the actual system to be modelled. Consequently, even if the modelling results for the test catchments are satisfactory, the reliability and applicability of these models for other catchments remain uncertain. It is deemed that by employing process-based, deterministic models, many of these uncertainties can be eliminated. A lack of understanding of the hydrological processes occurring during storm events and the absence of good calibration data, however, hamper the advancement of such models and limit their use in the field. This research proposes that the development of a hydrologic model based on the kinematic wave equations linked to an advection-dispersion model that simulates pollutant detachment and transport will improve both runoff quantity and quality simulations and enhance the robustness of the predictions. At the very worst, a model of this type could still highlight the underlying issues that inhibit models from reproducing the recorded historical hydrographs and pollutographs. In actual fact, this approach has already been applied by various modellers to simulate the entrainment of pollutants from urban catchments. Also, the paradigm shift to using the Water Sensitive Urban Design (WSUD) approach in designing urban stormwater systems has prompted the need to differentiate the various sources of pollutants in urban catchments such as roads, roofs and other impervious surfaces. The primary objective of the study reported herein is to model runoff quantity and quality from small urban catchments, facilitated by the procurement of the necessary field data to calibrate and validate the model via implementation of a comprehensive field exercise based in Sydney. From a water quality perspective, trace metals were selected as the foci. The study outcomes include the formulation of a linkage of models capable of providing accurate and reliable runoff quantity and quality predictions for the study catchments by taking into consideration: - The different availability of pollutants from urban catchments, i.e. roads vs. roofs; - The build-up characteristics of pollutants on the distinct urban surfaces and their spatial distribution; - The contribution of rainwater to urban runoff pollution; - The partitioning of pollutants according to particulate bound and dissolved phases; - The respective role of rainfall and runoff in the detachment and entrainment of pollutants; - The influence of particle properties such as particle size distribution and density on pollutant transport; and - The relationship associating particulate bound metals to suspended solids. The simulation results obtained using the proposed model were found to be suitable for modelling the detachment and transport of pollutants for small urban catchments. Interpretation of these results reveals several key findings which could help to rectify shortcomings of existing modelling approaches. Even though the robustness of the model presented here may not translate into a significant improvement in the overall robustness of model predictions, the physical basis on which this process-based model was developed nevertheless provides the flexibility necessary for implementation at alternative sites. It is also shown that the availability of reliable runoff data is essential for implementation of the model for other similar urban catchments. In conclusion, the proposed model in this study will serve as a worthy tool in future urban catchment management studies.
|
4 |
Novel Analytical Hydrodynamic Modeling for Evaluating and Optimizing Alluvial Recharge / Neuartige hydrodynamisch-analytische Modellierung zur Quantifizierung und Optimierung der Grundwasserneubildung in Folge von Versickerung in ephemeren GewässernPhilipp, Andy 10 October 2013 (has links) (PDF)
This thesis presents a novel analytical solution strategy for the zero-inertia (ZI) equations of free surface flow. These equations are utilized herein for routing flood flow in open channels and for simulating excess rainfall runoff on overland planes. The novel solution approach is shown to be both accurate and robust, especially under the complicated and intricate conditions of infiltrating flow on initially dry river beds or soils, e.g., as present in arid and semiarid areas. This is underlain by comparing modeling results of the novel analytical procedure with those of validated numerical solutions. Furthermore, it is shown that the analytical ZI model can deliver a process-oriented portrayal of runoff concentration in the flood-generating parts of the catchment.
Subsequently, the novel analytical ZI model is applied for a real-world water management problem in the Sultanate of Oman, Arabian Peninsula. Within an integrated flash flood routing model—which is also presented in this thesis—the novel analytical routing approach helps in accurately matching the dynamics of advancing and infiltrating ephemeral river flow, established as a consequence of release from a groundwater recharge dam. The integrated modeling system houses the aforementioned analytical downstream model and tailor-made, state-of-the-art modeling components to portray the upstream flow processes, dam operation (including evaporation), and spillway release flow. The proposed modeling system can aid in rendering a realistic image of transient transmission losses and dependent flow dynamics. This is of extremely high importance for water resources assessment, as well as for optimizing recharge dam operation strategies in order to maximize downstream transmission losses and, thus, groundwater recharge. / Diese Dissertation präsentiert einen neuartigen analytischen Lösungsansatz für das beschleunigungsfreie Wellenmodell (bzw. „Zero-Inertia-Modell“, „ZI-Modell“, oder „diffusives Wellenmodell“). Im Rahmen der Arbeit wird das hergeleitete hydrodynamische Modell sowohl zur Simulation von Freispiegelabflüssen in nichtprismatischen und durchlässigen Gerinnen, als auch für die Beschreibung von auf der Landoberfläche abfließendem Infiltrationsüberschuss eingesetzt. Es wird gezeigt, dass der neuartige analytische Ansatz — im Hinblick auf Massenerhaltung und die exakte Abbildung der Abflussdynamik — akkurate Ergebnisse liefert und gleichzeitig unter komplexen und verwickelten Prozessbedingungen anwendbar ist. So belegt eine vergleichende Analyse mit validierten numerischen Lösungsansätzen die Robustheit des analytischen ZI-Modells. Insbesondere die im Sinne der numerischen Mathematik stabile und genaue Modellierung der gekoppelten Abfluss- und Infiltrationsvorgänge in anfänglich trockenen Gerinnen ist dabei ein Novum. Weiterhin wird die Eignung und Anwendbarkeit des neuartigen Modellansatzes zur Beschreibung der Abflusskonzentrationsprozesse gezeigt.
Der neuartige Lösungsansatz wird im Folgenden für ein reales Wassermanagementproblem im Sultanat Oman, Arabische Halbinsel eingesetzt. Als Bestandteil eines integrierten Modellsystems, welches ebenfalls im Rahmen der Dissertation vorgestellt wird, dient das analytische ZI-Modell zur Simulation von infiltrierendem Wadiabfluss, welcher unterstrom von Grundwasseranreicherungsdämmen starke Verluste von Masse und Impuls erfährt. Zusammen mit maßgeschneiderten und dem Stand der Technik entsprechenden Komponenten für die Betriebssimulation des Anreicherungsdammes (inklusive Verdunstung von der freien Seefläche) sowie für die Abbildung der oberstromigen hydrodynamischen Prozesse (ebenfalls inklusive Infiltration) wird der neuartige analytische Ansatz in einem Modellsystem zusammengefasst. Das Modellsystem ist in der Lage ein realistisches Bild der raumzeitlichen Dynamik des Abflusses sowie der Grundwasserneubildung aus infiltrierendem Wadiabfluss zu liefern. Damit stellt das Modellsystem ein wertvolles Werkzeug sowohl zur Wasserdargebotsermittlung, als auch für die Optimierung des Betriebes von Grundwasseranreicherungsdämmen dar.
|
5 |
Novel Analytical Hydrodynamic Modeling for Evaluating and Optimizing Alluvial Recharge: Principles, Model Approaches and Their Application for Water Resources Assessment in an Arid RegionPhilipp, Andy 17 July 2013 (has links)
This thesis presents a novel analytical solution strategy for the zero-inertia (ZI) equations of free surface flow. These equations are utilized herein for routing flood flow in open channels and for simulating excess rainfall runoff on overland planes. The novel solution approach is shown to be both accurate and robust, especially under the complicated and intricate conditions of infiltrating flow on initially dry river beds or soils, e.g., as present in arid and semiarid areas. This is underlain by comparing modeling results of the novel analytical procedure with those of validated numerical solutions. Furthermore, it is shown that the analytical ZI model can deliver a process-oriented portrayal of runoff concentration in the flood-generating parts of the catchment.
Subsequently, the novel analytical ZI model is applied for a real-world water management problem in the Sultanate of Oman, Arabian Peninsula. Within an integrated flash flood routing model—which is also presented in this thesis—the novel analytical routing approach helps in accurately matching the dynamics of advancing and infiltrating ephemeral river flow, established as a consequence of release from a groundwater recharge dam. The integrated modeling system houses the aforementioned analytical downstream model and tailor-made, state-of-the-art modeling components to portray the upstream flow processes, dam operation (including evaporation), and spillway release flow. The proposed modeling system can aid in rendering a realistic image of transient transmission losses and dependent flow dynamics. This is of extremely high importance for water resources assessment, as well as for optimizing recharge dam operation strategies in order to maximize downstream transmission losses and, thus, groundwater recharge.:List of Figures
List of Tables
List of Algorithms
List of Symbols and Acronyms
1 Introduction
1.1 The Role of Ephemeral River Flow for Groundwater Recharge
1.2 Methods for Estimating Groundwater Recharge
1.3 Groundwater Augmentation Techniques and the Involved Processes
1.4 The Role of Overland Flow for Flash Flood Formation
1.5 Objectives of the Thesis
1.6 Structure of the Work
2 Literature Review
2.1 Surface-Water Based Studies on the Estimation of Indirect Recharge
2.2 Review of Literature on Process-Oriented Overland Flow Modeling
2.3 Summary
3 Principles of Physically-Based Modeling of Infiltrating Free Surface Flows
3.1 Hydraulic Phases of an Infiltrating Flow Event
3.2 Hydrodynamic Models
3.2.1 The Saint-Venant Equations
3.2.2 Zero-Inertia Approximation
3.2.3 Kinematic Wave Approximation
3.2.4 Other Simplifications of the Full Hydrodynamic Model
3.3 Initial and Boundary Conditions
3.4 Relating Friction and Flow Properties
3.5 Accounting for Losses or Gains
3.6 Including Arbitrary Cross-Sectional Geometries
3.7 Discussion of the Reviewed Flow Models
3.7.1 Discussion of Modeling Approaches for Ephemeral River Routing
3.7.2 A Suitable Hydrodynamic Model for Overland Flow
3.7.3 On the Portrayal of Shocks with the Kinematic Wave Model
3.8 Summary
4 Solution Procedures for the Reviewed Flow Models
4.1 Method of Characteristics
4.2 Numerical Solution Procedures
4.2.1 Introduction to Finite Difference Methods
4.2.2 Mathematical Principles of Finite Difference Methods
4.3 Analytical Solution Procedures
4.4 Discussion of the Reviewed Solution Procedures
4.5 Summary and Conclusions
5 Novel Analytical Solution Approaches for the Zero-Inertia Equations
5.1 Novel Analytical Solution Approach for Zero-Inertia Open Channel Flow
5.1.1 Governing Equations
5.1.2 Including Nonprismatic Channel Geometries
5.1.3 Boundary and Initial Conditions
5.1.4 Analytical Solution of the Momentum Equation
5.1.5 Analytical Solution of the Continuity Equation
5.1.6 Algorithm for the Iterative Solution of the Nonlinear Problem
5.1.7 Coupling Surface Flow and Infiltration
5.1.8 Additional Remarks
5.2 Novel Analytical Solution Approach for Zero-Inertia Overland Flow
5.2.1 Governing Equations
5.2.2 Boundary and Initial Conditions
5.2.3 Analytical Solution
5.2.4 Algorithm for the Iterative Solution of the Nonlinear Problem
5.3 Summary
6 Comparative Studies with Generally Accepted Approaches
6.1 Open Channel Flow in Prismatic and Nonprismatic Permeable Open Channels
6.1.1 Test Setup
6.1.2 Comparison of Flow Dynamics
6.1.3 Analysis of the Geometry Parameter Sensitivity
6.1.4 Evaluating the Stability of the Analytical ZI Model
6.1.5 Summary
6.2 Overland Flow on a Plane
6.2.1 Test Setup
6.2.2 Comparison of Modeling Results
6.2.3 Summary
7 Flash Flood Routing under Transmission Losses and Dam Operation
7.1 Outline of the Structure of a Novel Integrated Modeling System
7.1.1 Wadi Flow Routing Models
7.1.2 Dam Simulation Model with Evaporation Component
7.2 Real-World Application of the Modeling System for an Arid Region
7.2.1 Study Area and Available Data
7.2.2 Parameter Sensitivity Analysis
7.2.3 Optimization-Based Process Parameter Estimation
7.2.4 Model Application for Wadi Ma\\\\\\\'awil
7.3 Summary
8 Summary and Conclusions
9 Outlook
9.1 The Modeling System for Improving Water Resources Assessment
9.2 The Modeling System for Optimizing Groundwater Recharge
Bibliography
A Mathematical Supplements
A.1 Explicit First-Order Finite Difference Scheme for the Kinematic Wave Model
A.2 Explicit Second-Order Finite Difference Scheme for the Kinematic Wave Model
A.3 Implicit Finite Difference Scheme with Interior Point (Preissmann Scheme)
A.4 Analytical Solution of the Kinematic Wave Model
A.5 Details on the Derivation of the Iterative Procedure (5.47);(5.48)
A.6 Details on the Evaluation of Equation (5.60)
B Selected Publications of the Author
B.1 Analytical Model of Surge Flow in Nonprismatic Permeable Channels
B.2 Analytical Model of Surface Flow on Hillslopes
B.3 Integrated Modeling System for Flash Flood Routing in Ephemeral Rivers / Diese Dissertation präsentiert einen neuartigen analytischen Lösungsansatz für das beschleunigungsfreie Wellenmodell (bzw. „Zero-Inertia-Modell“, „ZI-Modell“, oder „diffusives Wellenmodell“). Im Rahmen der Arbeit wird das hergeleitete hydrodynamische Modell sowohl zur Simulation von Freispiegelabflüssen in nichtprismatischen und durchlässigen Gerinnen, als auch für die Beschreibung von auf der Landoberfläche abfließendem Infiltrationsüberschuss eingesetzt. Es wird gezeigt, dass der neuartige analytische Ansatz — im Hinblick auf Massenerhaltung und die exakte Abbildung der Abflussdynamik — akkurate Ergebnisse liefert und gleichzeitig unter komplexen und verwickelten Prozessbedingungen anwendbar ist. So belegt eine vergleichende Analyse mit validierten numerischen Lösungsansätzen die Robustheit des analytischen ZI-Modells. Insbesondere die im Sinne der numerischen Mathematik stabile und genaue Modellierung der gekoppelten Abfluss- und Infiltrationsvorgänge in anfänglich trockenen Gerinnen ist dabei ein Novum. Weiterhin wird die Eignung und Anwendbarkeit des neuartigen Modellansatzes zur Beschreibung der Abflusskonzentrationsprozesse gezeigt.
Der neuartige Lösungsansatz wird im Folgenden für ein reales Wassermanagementproblem im Sultanat Oman, Arabische Halbinsel eingesetzt. Als Bestandteil eines integrierten Modellsystems, welches ebenfalls im Rahmen der Dissertation vorgestellt wird, dient das analytische ZI-Modell zur Simulation von infiltrierendem Wadiabfluss, welcher unterstrom von Grundwasseranreicherungsdämmen starke Verluste von Masse und Impuls erfährt. Zusammen mit maßgeschneiderten und dem Stand der Technik entsprechenden Komponenten für die Betriebssimulation des Anreicherungsdammes (inklusive Verdunstung von der freien Seefläche) sowie für die Abbildung der oberstromigen hydrodynamischen Prozesse (ebenfalls inklusive Infiltration) wird der neuartige analytische Ansatz in einem Modellsystem zusammengefasst. Das Modellsystem ist in der Lage ein realistisches Bild der raumzeitlichen Dynamik des Abflusses sowie der Grundwasserneubildung aus infiltrierendem Wadiabfluss zu liefern. Damit stellt das Modellsystem ein wertvolles Werkzeug sowohl zur Wasserdargebotsermittlung, als auch für die Optimierung des Betriebes von Grundwasseranreicherungsdämmen dar.:List of Figures
List of Tables
List of Algorithms
List of Symbols and Acronyms
1 Introduction
1.1 The Role of Ephemeral River Flow for Groundwater Recharge
1.2 Methods for Estimating Groundwater Recharge
1.3 Groundwater Augmentation Techniques and the Involved Processes
1.4 The Role of Overland Flow for Flash Flood Formation
1.5 Objectives of the Thesis
1.6 Structure of the Work
2 Literature Review
2.1 Surface-Water Based Studies on the Estimation of Indirect Recharge
2.2 Review of Literature on Process-Oriented Overland Flow Modeling
2.3 Summary
3 Principles of Physically-Based Modeling of Infiltrating Free Surface Flows
3.1 Hydraulic Phases of an Infiltrating Flow Event
3.2 Hydrodynamic Models
3.2.1 The Saint-Venant Equations
3.2.2 Zero-Inertia Approximation
3.2.3 Kinematic Wave Approximation
3.2.4 Other Simplifications of the Full Hydrodynamic Model
3.3 Initial and Boundary Conditions
3.4 Relating Friction and Flow Properties
3.5 Accounting for Losses or Gains
3.6 Including Arbitrary Cross-Sectional Geometries
3.7 Discussion of the Reviewed Flow Models
3.7.1 Discussion of Modeling Approaches for Ephemeral River Routing
3.7.2 A Suitable Hydrodynamic Model for Overland Flow
3.7.3 On the Portrayal of Shocks with the Kinematic Wave Model
3.8 Summary
4 Solution Procedures for the Reviewed Flow Models
4.1 Method of Characteristics
4.2 Numerical Solution Procedures
4.2.1 Introduction to Finite Difference Methods
4.2.2 Mathematical Principles of Finite Difference Methods
4.3 Analytical Solution Procedures
4.4 Discussion of the Reviewed Solution Procedures
4.5 Summary and Conclusions
5 Novel Analytical Solution Approaches for the Zero-Inertia Equations
5.1 Novel Analytical Solution Approach for Zero-Inertia Open Channel Flow
5.1.1 Governing Equations
5.1.2 Including Nonprismatic Channel Geometries
5.1.3 Boundary and Initial Conditions
5.1.4 Analytical Solution of the Momentum Equation
5.1.5 Analytical Solution of the Continuity Equation
5.1.6 Algorithm for the Iterative Solution of the Nonlinear Problem
5.1.7 Coupling Surface Flow and Infiltration
5.1.8 Additional Remarks
5.2 Novel Analytical Solution Approach for Zero-Inertia Overland Flow
5.2.1 Governing Equations
5.2.2 Boundary and Initial Conditions
5.2.3 Analytical Solution
5.2.4 Algorithm for the Iterative Solution of the Nonlinear Problem
5.3 Summary
6 Comparative Studies with Generally Accepted Approaches
6.1 Open Channel Flow in Prismatic and Nonprismatic Permeable Open Channels
6.1.1 Test Setup
6.1.2 Comparison of Flow Dynamics
6.1.3 Analysis of the Geometry Parameter Sensitivity
6.1.4 Evaluating the Stability of the Analytical ZI Model
6.1.5 Summary
6.2 Overland Flow on a Plane
6.2.1 Test Setup
6.2.2 Comparison of Modeling Results
6.2.3 Summary
7 Flash Flood Routing under Transmission Losses and Dam Operation
7.1 Outline of the Structure of a Novel Integrated Modeling System
7.1.1 Wadi Flow Routing Models
7.1.2 Dam Simulation Model with Evaporation Component
7.2 Real-World Application of the Modeling System for an Arid Region
7.2.1 Study Area and Available Data
7.2.2 Parameter Sensitivity Analysis
7.2.3 Optimization-Based Process Parameter Estimation
7.2.4 Model Application for Wadi Ma\\\\\\\'awil
7.3 Summary
8 Summary and Conclusions
9 Outlook
9.1 The Modeling System for Improving Water Resources Assessment
9.2 The Modeling System for Optimizing Groundwater Recharge
Bibliography
A Mathematical Supplements
A.1 Explicit First-Order Finite Difference Scheme for the Kinematic Wave Model
A.2 Explicit Second-Order Finite Difference Scheme for the Kinematic Wave Model
A.3 Implicit Finite Difference Scheme with Interior Point (Preissmann Scheme)
A.4 Analytical Solution of the Kinematic Wave Model
A.5 Details on the Derivation of the Iterative Procedure (5.47);(5.48)
A.6 Details on the Evaluation of Equation (5.60)
B Selected Publications of the Author
B.1 Analytical Model of Surge Flow in Nonprismatic Permeable Channels
B.2 Analytical Model of Surface Flow on Hillslopes
B.3 Integrated Modeling System for Flash Flood Routing in Ephemeral Rivers
|
Page generated in 0.0714 seconds