• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 622
  • 215
  • 80
  • 75
  • 67
  • 22
  • 13
  • 12
  • 11
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1432
  • 187
  • 182
  • 179
  • 174
  • 123
  • 120
  • 112
  • 108
  • 103
  • 96
  • 93
  • 87
  • 71
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

KINEMATIC DOWNSIZING AT z similar to 2

Simons, Raymond C., Kassin, Susan A., Trump, Jonathan R., Weiner, Benjamin J., Heckman, Timothy M., Barro, Guillermo, Koo, David C., Guo, Yicheng, Pacifici, Camilla, Koekemoer, Anton, Stephens, Andrew W. 03 October 2016 (has links)
We present results from a survey of the internal kinematics of 49 star-forming galaxies at z similar to 2 in the CANDELS fields with the Keck/MOSFIRE spectrograph, Survey in the near-Infrared of Galaxies with Multiple position Angles (SIGMA). Kinematics (rotation velocity V-rot and gas velocity dispersion sg) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z similar to 2, massive star-forming galaxies (log M-*/M-circle dot less than or similar to 10.2) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of V-rot sg that are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low-mass galaxies (log M-*/M-circle dot less than or similar to 10.2) at this epoch are still in the early stages of disk assembly: their kinematics are often dominated by gas velocity dispersion and they fall from the Tully-Fisher relation to significantly low values of V-rot. This "kinematic downsizing" implies that the process(es) responsible for disrupting disks at z similar to 2 have a stronger effect and/or are more active in low-mass systems. In conclusion, we find that the period of rapid stellar mass growth at z similar to 2 is coincident with the nascent assembly of low-mass disks and the assembly and settling of high-mass disks.
302

LOW SURFACE BRIGHTNESS IMAGING OF THE MAGELLANIC SYSTEM: IMPRINTS OF TIDAL INTERACTIONS BETWEEN THE CLOUDS IN THE STELLAR PERIPHERY

Besla, Gurtina, Martínez-Delgado, David, van der Marel, Roeland P., Beletsky, Yuri, Seibert, Mark, Schlafly, Edward F., Grebel, Eva K., Neyer, Fabian 28 June 2016 (has links)
We present deep optical images of the Large and Small Magellanic Clouds (LMC and SMC) using a low cost telephoto lens with a wide field of view to explore stellar substructure in the outskirts of the stellar disk of the LMC (< 10 degrees from the LMC center). These data have higher resolution than existing star count maps, and highlight the existence of stellar arcs and multiple spiral arms in the northern periphery, with no comparable counterparts in the south. We compare these data to detailed simulations of the LMC disk outskirts, following interactions with its low mass companion, the SMC. We consider interaction in isolation and with the inclusion of the Milky Way tidal field. The simulations are used to assess the origin of the northern structures, including also the low density stellar arc recently identified in the Dark Energy Survey data by Mackey et al. at similar to 15 degrees. We conclude that repeated close interactions with the SMC are primarily responsible for the asymmetric stellar structures seen in the periphery of the LMC. The orientation and density of these arcs can be used to constrain the LMC's interaction history with and impact parameter of the SMC. More generally, we find that such asymmetric structures should be ubiquitous about pairs of dwarfs and can persist for 1-2 Gyr even after the secondary merges entirely with the primary. As such, the lack of a companion around a Magellanic Irregular does not disprove the hypothesis that their asymmetric structures are driven by dwarf-dwarf interactions.
303

On the origin, morphology and kinematics of molecular gas in early-type galaxies

Davis, Timothy A. January 2011 (has links)
In this thesis I present new interferometric <sup>12</sup>CO observations of 30 early-type galaxies (ETGs). These galaxies were the brightest ~2/3 of CO detected ETGs from the complete, volume limited Atlas<sup>3D</sup> survey. By including literature data I construct the largest ever sample of mapped ETGs, containing 41 objects, and use this sample to analyse the morphology, kinematics and origin of the molecular gas. Many of the galaxies in this sample have relaxed molecular discs, but polar structures, rings, bars and disturbed gas distributions are also present. Around half of the galaxies have molecular gas that follows the stellar light profile, similar to molecular gas in spirals, while others have molecular gas excesses, truncations, rings or composite profiles. The molecular gas extent is smaller in absolute terms in ETGs than in late-type galaxies, but the size distributions are similar once scaled by the galaxies optical/stellar characteristic scalelengths. Cluster environments, however, lead to systems having denser, more compact molecular reservoirs. I find that molecular gas is an excellent kinematic tracer, even in high-mass ETGs, and thus molecules may be the kinematic tracer of choice for probing the M/L evolution of galaxies over cosmic-time. I use this knowledge to construct the first ever early-type CO Tully-Fisher relation, and show that it is offset from the Tully-Fisher relation of spirals by 0.98±0.22 magnitudes at Ks-band. I find that a third of my sample galaxies have their molecular and ionised gas kinematically misaligned with respect to the stars, setting a strong lower limit on the importance of externally acquired gas (e.g. from mergers and cold accretion). The origin of the molecular gas seems to depend strongly on environment, with externally acquired material being common in the field but nearly completely absent in Virgo. Furthermore, my results suggest that galaxy mass may be an important independent factor associated with the origin of the gas, with the most massive fast-rotating galaxies in our sample always having kinematically aligned gas.
304

Examination of lower extremity mechanics during three landing tasks and injury prediction ability of those models as compared to a functional test

Coffey, Timothy G 01 January 2015 (has links)
Anterior cruciate ligament (ACL) ruptures are one of the most common knee ligament injuries suffered by both male and female athletes. These injuries are severe in nature and also have long-term impacts on activities of daily living. Significant research has been conducted utilizing a drop landing task to attempt to better understand the mechanics behind the injury and to help identify at-risk athletes for targeted intervention. However, there have not been any published standards for the height of the drop landing activity, and previous researchers have also raised some concerns about the ability of a drop landing task to replicate the landing mechanics of a sport-specific task. To examine possible differences in performance based on specific landing tasks, the first study compared the landing mechanics of male and female high school athletes in three different landing conditions (drop landing, DL; adjusted height drop landing, AHDL; and a vertical jump task, VJL) (Chapter 3). Thirty-seven (37) athletes completed bilateral landings in the three conditions, and their kinetic and kinematic landing mechanics were compared across conditions. For the male participants, maximum knee flexion during landing was greater in AHDL condition as compared to the DL and VJL conditions. Both male and female participants demonstrated greater hip adduction at impact and overall maximum value in the VJL condition as compared to the two drop landings. As drop landing tasks have been used to identify at-risk athletes, it was important to examine the three different tasks’ ability to predict lower extremity ligamentous injuries, and whether those 3D motion analysis predictors were more precise than a quick clinical symmetry screening tool (Chapter 4). One-hundred-and-sixty-five (165) athletes completed the clinical symmetry screen, and a subgroup of thirty-seven (37) athletes completed the 3D motion analysis. All of these participants were surveyed for lower extremity ligamentous injuries over the course of a season. Due to a small number of reported injuries, none of the injury predictor models based on 3D motion analysis landing mechanics or the clinical symmetry screening tool were able to produce accurate predictor models of injury. Knee abduction moment has been shown to be one of the strongest predictors of ACL injuries, and due to the collection of bilateral kinetics for a previous study (Chapter 3), there was a need to examine differences in KAM between the three different landing tasks (Chapter 5). Ten (10) recreational athletes completed bilateral landings in the three conditions, with foot placement relative to force plates to enable KAM calculation. The participants did not demonstrate any difference in KAM between the three landing conditions; however, a test for constant variance showed that the AHDL resulted in significantly less variance in KAM than DL or VJL. The results of these studies suggest that while easy to standardize, a set height drop landing task does not produce identical landing mechanics to those from an adjusted height drop landing task or a vertical jump task. Further research is needed to create or justify standardized landing tasks for researchers to utilize that produce consistent results that best duplicate the landing mechanics athletes performed during sporting activities. While the landing mechanics demonstrated in the three tasks and the results from the clinical screening were not able to predict injuries, future studies should examine quick clinical screening tools to identify athletes at a high risk of injury.
305

Kinematics and shapes of galaxies in rich clusters

D'Eugenio, Francesco January 2014 (has links)
In this work we have studied the relationship between the kinematics and shapes of Early Type Galaxies (ETGs) in rich clusters. In particular we were interested to extend the kinematic morphology density relation to the richest clusters. We obtained data from FLAMES/GIRAFFE to probe the stellar kinematics of a sample of 30 ETGs in the massive cluster Abell 1689 at z = 0.183, to classify them as Slow Rotators (SRs) or Fast Rotators (Frs). To date, this is the highest redshift cluster studied in this way. We simulated FLAMES/GIRAFFE observations of the local SAURON galaxies to account for the bias introduced compared to the ATLAS3D sample, which we used as a local comparison. We find that the luminosity function of SRs in Abell 1689 is the same as that in ATLAS<sup>3D</sup>, down to the faintest objects probed (M<sub>K</sub> ≈ -23). The number fraction of SRs over the ETG population in Abell 1689 is f<sub>SR</sub> = 0.15 +/- 0.03, consistent with the value found in the Virgo Cluster. However, within the cluster, f<sub>SR</sub> rises sharply with the projected number density of galaxies, rising from f<sub>SR</sub> = 0.01 in the least dense bin to f<sub>SR</sub> = 0.58 in the densest bin. We conclude that the fraction of SRs is not determined by the local number density of galaxies, but rather by the physical location within the cluster. This might be due to dynamical processes which cause SRs (on average more massive) to sink in the gravitational potential of the cluster. Next we explore the distribution of projected ellipticity &epsilon; in galaxies belonging to a sample of clusters from SDSS (z </~ 0.1) and the CLASH survey (z ≈ 0.2). We were interested to establish whether the fraction of galaxies flatter than &epsilon; = 0.4 (a proxy for FRs) varies from cluster to cluster. We find some significant variations. We go on to probe the projected shape as a function of projected cluster-centric radius. In both samples we find that on average galaxies have progressively rounder projected shapes at lower cluster-centric projected distance. In the SDSS sample we show that this trend exists above and beyond the trend for brighter galaxies to be more common near the centre of clusters (bright galaxies are on average rounder). In order to disentangle the trend for SRs (which are rounder) to be more common near the centre of clusters, we isolate a subsample of FRs only, by considering only galaxies with &epsilon; > 0.4. We find that even the intrinsically flat FRs are on average rounder at lower projected cluster-centric distance. We conclude that the observed trend is due either to the dynamic heating of the stellar discs being strongest near the centre of clusters, or due to an anti-correlation of the bulge fractions with the cluster-centric distance.
306

The Lifetimes of Phases in High-mass Star-forming Regions

Battersby, Cara, Bally, John, Svoboda, Brian 01 February 2017 (has links)
High-mass stars form within star clusters from dense, molecular regions (DMRs), but is the process of cluster formation slow and hydrostatic or quick and dynamic? We link the physical properties of high-mass star-forming regions with their evolutionary stage in a systematic way, using Herschel and Spitzer data. In order to produce a robust estimate of the relative lifetimes of these regions, we compare the fraction of DMRs above a column density associated with high-mass star formation, N(H-2) > 0.4-2.5 x 10(22) cm(-2), in the "starless" (no signature of stars >= 10 M circle dot forming) and star-forming phases in a 2 degrees x 2(degrees) region of the Galactic Plane centered at l = 30 degrees. Of regions capable of forming high-mass stars on similar to 1 pc scales, the starless (or embedded beyond detection) phase occupies about 60%-70% of the DMR lifetime, and the star-forming phase occupies about 30%-40%. These relative lifetimes are robust over a wide range of thresholds. We outline a method by which relative lifetimes can be anchored to absolute lifetimes from large-scale surveys of methanol masers and UCHII regions. A simplistic application of this method estimates the absolute lifetime of the starless phase to be 0.2-1.7 Myr (about 0.6-4.1 fiducial cloud free-fall times) and the star-forming phase to be 0.1-0.7 Myr (about 0.4-2.4 free-fall times), but these are highly uncertain. This work uniquely investigates the star-forming nature of high column density gas pixel by pixel, and our results demonstrate that the majority of high column density gas is in a starless or embedded phase.
307

Orbits of massive satellite galaxies - II. Bayesian estimates of the Milky Way and Andromeda masses using high-precision astrometry and cosmological simulations

Patel, Ekta, Besla, Gurtina, Mandel, Kaisey 07 1900 (has links)
In the era of high-precision astrometry, space observatories like the Hubble Space Telescope (HST) and Gaia are providing unprecedented 6D phase-space information of satellite galaxies. Such measurements can shed light on the structure and assembly history of the Local Group, but improved statistical methods are needed to use them efficiently. Here we illustrate such a method using analogues of the Local Group's two most massive satellite galaxies, the Large Magellanic Cloud (LMC) and Triangulum (M33), from the Illustris dark-matter-only cosmological simulation. We use a Bayesian inference scheme combining measurements of positions, velocities and specific orbital angular momenta (j) of the LMC/M33 with importance sampling of their simulated analogues to compute posterior estimates of the Milky Way (MW) and Andromeda's (M31) halo masses. We conclude that the resulting host halo mass is more susceptible to bias when using measurements of the current position and velocity of satellites, especially when satellites are at short-lived phases of their orbits (i.e. at pericentre). Instead, the j value of a satellite is well conserved over time and provides a more reliable constraint on host mass. The inferred virial mass of the MW(M31) using j of the LMC (M33) is M-vir,M- MW = 1.02(-0.55)(+0.77) x 10(12) M-circle dot (M-vir,M- M31 = 1.37(-0.75)(+1.39) x 10(12) M-circle dot). Choosing simulated analogues whose j values are consistent with the conventional picture of a previous (<3 Gyr ago), close encounter (<100 kpc) of M33 about M31 results in a very low virial mass for M31 (similar to 10(12) M-circle dot). This supports the new scenario put forth in Patel, Besla & Sohn, wherein M33 is on its first passage about M31 or on a long-period orbit. We conclude that this Bayesian inference scheme, utilizing satellite j, is a promising method to reduce the current factor of 2 spread in the mass range of the MW and M31. This method is easily adaptable to include additional satellites as new 6D phase-space information becomes available from HST, Gaia and the James Webb Space Telescope.
308

Development of a high-precision sensor for the attitude determination of the bifocal spacecraft simulator

Connolly, Brian D. 06 1900 (has links)
Approved for public release; distribution is unlimited / Design Center of the Naval Postgraduate School. The objective of this simulator is to provide on-the-ground simulation of the dynamics and control of spacecraft for high precision Acquisition, Tracking and Pointing applications associated with space based laser relay. The required initial attitude determination accuracy for the Bifocal Relay Mirror test-bed is 10 æ-radians. Normally, in laboratories where very high initial attitude knowledge is required, actual (space qualified) star trackers are incorporated into the testbed design. This is not possible at NPS as the laboratory does not have a skylight to allow visual access to the stars, and the photosensitive nature of many of the experiments would make such an opening inconvenient. Since it is critical to the operation of the testbed to provide accurate attitude knowledge, a substitute system was required. The present thesis documents the development of a new attitude sensor capable of providing attitude information within the required 10æ-radians (within a field of view of the order of 1 deg). The concepts leading up to the final design, the testing and selection of the equipment used in the final configuration, and a detailed explanation of how the final system calibration was performed are discussed in detail. / Lieutenant, United States Navy
309

HUBBLE SPACE TELESCOPE PROPER MOTIONS OF INDIVIDUAL STARS IN STELLAR STREAMS: ORPHAN, SAGITTARIUS, LETHE, AND THE NEW “PARALLEL STREAM”

Sohn, Sangmo Tony, van der Marel, Roeland P., Kallivayalil, Nitya, Majewski, Steven R., Besla, Gurtina, Carlin, Jeffrey L., Law, David R., Siegel, Michael H., Anderson, Jay 20 December 2016 (has links)
We present a multi-epoch Hubble Space Telescope (HST) study of stellar proper motions (PMs) for four fields along the Orphan Stream. We determine absolute PMs of several individual stars per target field using established techniques that utilize distant background galaxies to define a stationary reference frame. Five Orphan Stream stars are identified in one of the four fields based on combined color-magnitude and PM information. The average PM is consistent with the existing model of the Orphan Stream by Newberg et al. In addition to the Orphan Stream stars, we detect stars that likely belong to other stellar streams. To identify which stellar streams these stars belong to, we examine the 2d bulk motion of each group of stars on the sky by subtracting the PM contribution of the solar motion (which is a function of position on the sky and distance) from the observed PMs, and comparing the vector of net motion with the spatial extent of known stellar streams. By doing this, we identify candidate stars in the Sagittarius and Lethe streams, and a newly found stellar stream at a distance of similar to 17 kpc, which we tentatively name the "Parallel Stream." Together with our Sagittarius stream study, this work demonstrates that even in the Gaia era, HST will continue to be advantageous in measuring PMs of old stellar populations on a star-by-star basis, especially for distances beyond similar to 10 kpc.
310

Parâmetros Físicos e Abundâncias de Nebulosas Planetárias Extensas / Physical Parameters and Abundances of Extensive Planetary Nebulae

Lago, Paulo Jakson Assunção 08 March 2013 (has links)
Nebulosas planetárias são o resultado do processo de evolução estelar de estrelas com massas que vão de 0.8 a 8 massas solares; seu estudo possibilita uma melhor compreensão dos mecanismos de enriquecimento do meio interestelar por parte destas estrelas e a sua influência direta na evolução química da Galáxia. O uso da espectroscopia de campo integral possibilita o estudo da distribuição angular de propriedades como a densidade, as abundâncias iônicas, o perfil de ionização entre outras; já a espectroscopia de alta dispersão permite um estudo detalhado do campo de velocidades destes objetos, com velocidades típicas de expansão de 25km/s. Este trabalho é baseado nestas duas técnicas, com o objetivo de se obter a distribuição de diversos parâmetros físicos, apresentados aqui na forma de mapas e de diagramas, para uma amostra de nebulosas planetárias austrais. Os dados foram adquiridos utilizando a instrumentação do Observatório do Pico dos Dias (MCT/LNA), em duas missões realizadas em 2011 e 2012, usando respectivamente os espectrógrafos Eucalyptus e Coudé. Os resultados mostram a distribuição angular da densidade eletrônica, do fluxo das linhas do [SIII](6311A) e H, e também a distribuição da razão [SIII](6311A)/[SII](6717+6731A). Estes resultados salientam as regiões com maior grau de ionização, gradientes de ionização e inomogeneidades. Diagramas de diagnóstico são também mostrados a fim de complementar a análise e classificar os objetos. Os perfis cinemáticos também obtidos permitiram o estudo morfológico da amostra, detalhando suas estruturas. Os campos de velocidades foram usados para o cálculo da idade cinemática assim como a distância de uma das nebulosas da amostra. Os resultados obtidos são bons dados de entrada para futuras simulações morfo-cinemáticas que podem ser feitas utilizando softwares como o SHAPE, além de também serem possíveis simulações com códigos de fotoionização para a obtenção de modelos complementares. Os resultados em si são importantes tendo em vista a falta de informações a respeito da estrutura de planetárias austrais, já que não há nenhum grande levantamento morfológico como os existentes para as nebulosas boreais. / Planetary nebulae are the result of the stellar evolution process for stars from 0.8 to 8 solar masses; their study allows a better understanding of the enrichment mechanisms of interstellar medium by these stars, and their influence to the chemical evolution of the Galaxy. The use of integral field spectroscopy allows the study of the angular distribution of properties like density, chemical abundances and ionization profiles among others; on the other hand, high dispersion spectroscopy allows a detailed study of the velocity fields of these objects, with typical expansion velocity of 25km/s. This work is based on these two techniques; and aims to obtain the distribution of several physical parameters, presented here in the format of maps and diagrams. Data were acquired using the instrumentation from Pico dos Dias Observatory (MCT/LNA), in two missions performed in 2011 and 2012, using respectively the Eucalyptus and Coudé spectrographs. The results show the angular distribution of the electronic density, the flux of [SIII](6311A) and H alpha lines, and the distribution of the [SIII](6311A)/[SII](6717+ 6731A) ratio. These results highlight the regions with higher degree of ionization, ionization gradients and inhomogeneities. Diagnostics diagrams are shown too, aiming to complement the analysis and classify the objects. Kinematic profiles were also obtained and allowed the morphological study of the sample, detailing the structure of the objects. The velocity fields were used to calculate the kinematical age as well as the distance of one nebula of the sample. These results are a good start for future morpho-kinematic simulations. They can be used in softwares like SHAPE, and also in simulations with photoionization codes to obtain additional models. The results are also important in view of the rarity of information about structure of southern planetary nebulae, since there is no large survey such as those existing to the northern planetary nebulae.

Page generated in 0.1206 seconds