• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 15
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 26
  • 22
  • 14
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Dynamic Effect in the Hydroboration of Alkenes

Oyola, Yatsandra 2010 December 1900 (has links)
The hydroboration of simple alkenes with BH3 preferentially occurs in an anti- Markovnikov fashion. The standard explanation for this preference, reproduced in all general organic chemistry textbooks, is that the selectivity arises from a greater stability for the anti-Markovnikov transition state. This explanation presupposes the applicability of the transition-state theory model for reactivity and selectivity. This dissertation explores the applicability of transition state theory to selectivity in hydroborations and finds that in some cases transition state theory fails to accurately account for observations. Experimental results for the hydroboration of propene-d6 and styrene-d8 with excess BH3 was analyzed by 2H-NMR to determine the percentage of the Markovnikov product for the BH3-mediated reaction. The experimental selectivities were then compared with predictions based on very high-level calculations using transition state theory. It was observed that the regioselectivity of the hydroboration of these alkenes is lower than can be accounted for by transition state theory. The regioselectivity discrepancy was explored through dynamic trajectory analysis. It is proposed here that the observed regioselectivity is that of a “hot” reaction, resulting from an exothermic association of alkene with borane to form an intermediate complex. This complex then overcomes low-energy barriers to form anti-Markovnikov and Markovnikov products faster than excess energy is lost to solvent. This hypothesis was explored for the hydroboration of internal disubstituted and trisubstituted alkenes. The applicability of transition state theory and the role of dynamics in determining the selectivity was gauged by determining product ratios in the presence of large excesses of borane and by considering the energetics of the calculated hydroboration reaction path. In all cases the enthalpic barriers for the rate-limiting association step and the formation of products from the intermediate π -complex were small. Isotope effects were determined experimentally and were found to be too small for the conventional mechanism to be the predominate pathway. When the hydroboration reaction of propene with BH2Cl or BHCl2 was explored through a series of experimental and theoretical studies, we observed that the regioselectivity was lower than that predicted from transition state theory. However, the calculated pathways indicated that energy barriers for product formation were too large for this reaction to be considered a “hot” reaction. The regioselectivity discrepancy was attributed to the chloroboranes undergoing equilibration with selective reaction of the most highly reactive forms of the borane.
32

Mechanistic investigations of SpnF- and SpnL-catalyzed cyclizations in the biosynthesis of spinosyn A

Kim, Nam Ho, 1975- 03 March 2015 (has links)
Spinosyn A is a particularly interesting natural product due to its structural complexity and potent insecticidal activity. The biosynthetic pathway of spinosyn A is interesting as it has two unusual features, the SpnF-catalyzed (4+2) cycloaddition and the SpnL-catalyzed cyclization to produce the perhydro-as-indacene core. The work described in this dissertation focuses on elucidating the mechanisms of the SpnF- and SpnL-catalyzed reactions. SpnF has attracted significant interest as a possible Diels-Alderase. To explain how SpnF catalyzes the formation of cyclohexene ring, three plausible mechanisms have been proposed, the Diels-Alder reaction mechanism, the ionic rearrangement mechanism, and the biradical rearrangement mechanism. Kinetic isotope effect studies were performed using four deuterium-labeled mechanistic probes, specially the C4-D, C7-D, C11-D, and C12-D analogs. Currently, the ionic rearrangement mechanism can be excluded, based on the results using the C4-D and C7-D analogs. In addition, how SpnF accelerates the reaction was studied to assess the contribution of an entropic x preorganization compared to enthalpic transition state stabilization. To measure the relative rate enhancements due to structural perturbations, three mechanistic probes were synthesized, the linear analog, the C13-14 Unc analog, and the C2-3 Unc analog. Unfortunately, the linear analog and C13-14 Unc analog didn’t show any turnover activity under either non-enzymatic or enzymatic conditions. Thus, no conclusion could be drawn from incubation with these substrate analogs. Mechanistic studies of SpnL-catalyzed cyclization were devoted to differentiating between the Rauhut-Currier type mechanism and the Michael addition mechanism. Biochemical studies using the C13-F analog as a mechanism-based inhibitor showed the formation of a covalent adduct with SpnL, which is consistent with the Rauhut-Currier type mechanism. Additional experimental data obtained from isotope trace experiments and kinetic isotope effect studies using C12-D analog supports the Rauhut-Currier type mechanism. Biochemical studies concerning the role of SAM in SpnF and SpnL showed that SAM is required for the activity of SpnL, and were inconclusive for SpnF. SpnL mutant studies showed that Cys60 and Glu96 may be important for the catalysis of SpnL. Chemoenzymatic total synthesis of spinosyn A was completed by chemical etherification of 17-pseudoaglycone and D-forosamine. / text
33

Investigating the contribution of protein dynamics to catalysis in protochlorophyllide oxidoreductase

Hoeven, Robin January 2015 (has links)
Enzyme dynamics has been established to play a crucial role in catalysis, and it has therefore become an important area of research to better understand enzymatic rate enhancements. The light-activated enzyme protochlorophyllide oxidoreductase (POR) is a well-studied model system where dynamics are known to be important for catalysis. The catalytic reaction involves a sequential hydride and proton transfer to reduce the C17-C18 double bond in the protochlorophyllide (Pchlide) substrate with NADPH as a cofactor to yield the chlorophyllide (Chlide) product. Both H-transfer steps are established to undergo quantum tunneling, as derived from the temperature-dependence of the kinetic isotope effects (KIEs). Furthermore, a role for ‘promoting motions/vibrations’ has been presumed from the temperature-dependence KIE data, which will be investigated further in this thesis by the study of the KIE response to pressure. A general overview of the pressure-dependence as a new experimental probe is presented and compared with temperature-dependencies of KIEs, to establish whether pressure is suitable as an alternative technique for studying the role of enzyme dynamics in catalysis. This involves a comparison of pressure data from other enzyme systems to newly collected data for POR. However, no clear trend between temperature and pressure data is observed and hence, it can be concluded that pressure effects can be difficult to interpret. A case by case analysis is required and needs to be combined with computational simulations based on structural evidence (e.g. X-ray crystallographic), which is not yet available for POR.Solvent-viscosity has been successfully used to probe enzyme dynamics in POR and provides information on the extent of any protein networks that are involved along the reaction coordinate. Here I investigate the solvent-viscosity dependence of both H-transfer reactions in POR for a range of homologous POR enzymes to obtain an evolutionary perspective of the protein dynamics required for catalysis. This has been successfully used in the past on a limited number of POR homologues and has led to the formulation of a hypothesis supporting a twin-track evolution of the two catalytic steps in POR. I observed a lack of solvent-viscosity dependence in case of the hydride transfer across all the investigated lineages, while the proton transfer was shown to be more strongly affected by viscosity in prokaryotic enzymes than in their eukaryotic counterparts. This supports the proposed theory, suggesting an early optimisation of the dynamics involved in the light-activated hydride transfer with a strong reliance on localised motion. Conversely, the proton transfer experienced selective pressure to reduce its dependence on complex solvent-slaved motion and that has led to localised dynamics in eukaryotic POR homologues. Additionally, I found that the enzymes from eukaryotic species have a higher rate of both H-transfer steps, suggesting that an optimisation of the active site architecture occurred upon endosymbiosis. Enzyme dynamics clearly have a pivotal role to play in catalysis of this unique light-activated enzyme and detection of these will only be possible by detailed structural information.
34

Studies on the hydride transfer and other aspects of several thymidylate synthase variants

Gurevic, Ilya 01 December 2018 (has links)
The nucleotide 2'-deoxythymidine 5'-monophosphate (thymidylate, dTMP) is phosphorylated twice to become a substrate for DNA polymerases, which copy a cell’s genetic information in advance of cell division. The main route to dTMP is mediated by the enzyme thymidylate synthase (TSase) and goes through 2'-deoxyuridine 5'-monophosphate (dUMP); dUMP’s heterocyclic aromatic pyrimidine ring loses a proton from its C5 position and gains a methylene and a hydride from the other reactant, methylene tetrahydrofolate (MTHF). In general, intricate knowledge of an enzyme’s mechanism can yield insight that leads to the development of precision-targeted inhibitors tailored exactly to thymidylate synthase. In fact, even more careful targeting could be achievable: Although E. coli TSase has served as a model system, investigators have increasingly been directing their lines of inquiry toward human TSase. A general enzymatic catalytic cascade is complex, comprising substrate binding, the chemical steps and product release; typically, the product release step is rate-limiting. TSase, however, is partially rate-limited by the chemistry portion of the process. The enzymatic mechanism has been considered for decades, yet recently has undergone a reassessment. After substrate binding – for which there is strong evidence for preference to dUMP as the first ligand in the wild-type E. coli enzyme – the important events are methylene transfer from MTHF to dUMP, proton abstraction and hydride transfer. The last of these – hydride transfer – is irreversible and rate-limiting (to a large degree without Mg2+, and to a small but noticeable degree with Mg2+). The studies described here are aimed at three therapeutically relevant questions: (a) determining the extent of negative charge accumulation at the O4 position of the hydride transfer acceptor; (b) expanding knowledge of the differential properties of E. coli and human TSase; and (c) gaining insight into the molecular origin of the drug resistance seen in a clinically relevant human TSase mutant. The properties touched on in this work include steady-state kinetics; inhibition constants toward 5-fluoro dUMP, substrate binding sequence and the temperature dependency of intrinsic hydride transfer kinetic isotope effects (KIEs). Intrinsic KIEs are a specialized measurement that permits the investigator to examine a particular hydrogen transfer step in isolation; it is achieved by labeling the bond to hydrogen broken in the reaction with protium (1H, also written as H), deuterium (2H, also written as D) or tritium (3H, also written as T). The latter is radioactive. The reaction is conducted with a mixture of two hydrogen isotopes at a time, and the extent to which the heavier isotope is disfavored against reaction is assessed; this covers multiple steps. Heavier isotopes directly participating in a chemical step react slower both because of zero-point vibrational energies if a semi-classical view is taken and because of the mass-dependence of tunneling probabilities if a quantum-mechanical view is taken. Each of the two-way isotopic comparisons mentioned above furnishes an observed KIE for that competition between two isotopes. Mathematical combination of two isotopic comparisons cancels out the effect of isotopically insensitive steps and provides rich insight into the hydride transfer alone. The ultimate result is the ratio of rate constants for the isotopologues; this ratio’s magnitude and variation with temperature report on the compactness of the active site and its resistance to thermal fluctuation, respectively. Our results reveal a possible role for E. coli asparagine 177 (N177) in the hydride transfer transition state (TS) stabilization, as revealed by its disruption in the aspartate mutant, N177D. This disruption was found to be alleviated to a high extent when the substrate was changed to dCMP, consistent with the N177 stabilizing partial negative charge at the TS for hydride transfer. This has drug design implications. Our work on human TSase underscores slightly weaker substrate binding preference, insensitivity to Mg2+ and mild alteration of hydride transfer TS when compared with E. coli TSase. Finally, analysis of the Y33H mutant of human TSase – the affected residue being remote from the active site – indicated the drug resistance was because of a higher inhibition constant for 5F-dUMP and that the hydride transfer step is disrupted, with a wider variation among donor-acceptor distances (between the two carbons involved in the hydride transfer at the TS for that step). Other researchers’ crystallographic evidence reveals greater positional uncertainty for a set of active-site side chains in the E. coli equivalent mutant. In totality, the data available implicate enzyme motions as relevant to drug binding and to catalysis for human TSase. In summary, the research described herein enriches the understanding of several aspects of the behavior of multiple TSase variants – the overall performance as seen via steady-state kinetics; the pattern of substrate binding as seen with observed KIEs for the proton abstraction step; and the efficiency of active site preparation for hydride transfer as evidenced in the temperature dependency of intrinsic hydride transfer KIEs.
35

Toward Transition State Analysis of O-Glycoside Hydrolysis by Human Sucrase/Isomaltase

Bakhtiari, Rasa January 2014 (has links)
Type 2 diabetes is a major health concern worldwide. One of its complications is postprandial hyperglycemia, i.e., high blood glucose concentrations, caused by glucose fast release from dietary polysaccharides into the bloodstream after meals. α-Glucosidase inhibitor drugs reduce postprandial hyperglycemia by inhibiting maltase/glucoamylase (MGAM) and sucrase/isomaltase (SI). MGAM and SI transform polysaccharides into absorbable monosaccharides, and inhibiting them delays monosaccharide release into the blood. The three commercially available α-glucosidase inhibitors are limited by their absorption abilities, inhibition efficacies, and side effects, which highlights the need for more specific α-glucosidase inhibitors. Because enzymes catalyze their reactions by tightly binding to their cognate transition states (TS), TS analogs can be powerful inhibitors and potential drugs. The measurement and interpretation of kinetic isotope effects (KIEs) is the only method that can directly determine TS structures on large molecules. In this work, methods to prepare radioisotopically labelled maltose were developed, as well as methods to measure KIEs on acid- and enzyme-catalyzed maltose hydrolysis. However, the methods developed did not achieve the required precision for TS analysis. Also, KIEs were calculated computationally for a model reaction of maltose hydrolysis. / Thesis / Master of Science (MSc)
36

Understanding the AroA Mechanism: Evidence for Enolpyruvyl Activation and Kinetic Isotope Effect Measurements

Clark, Meghann E. 08 1900 (has links)
<p> AroA catalyzes a carboxyvinyl transfer reaction, forming enolpyruvyl shikimate 3-phosphate (EPSP) from shikimate 3-phosphate (S3P) and phosphoenolpyruvate (PEP). Upon extended incubation, it forms EPSP ketal by intramolecular nucleophilic attack of O4H on C2' of the enolpyruvyl group. EPSP ketal was previously proposed to form by non-enzymatic breakdown of the tetrahedral intermediate (THI) which had dissociated from AroA. In this study, EPSP ketal formed in the presence of excess AroA, which demonstrated that it was formed in the active site. This eliminated non-enzymatic THI breakdown as its source, and demonstrated that AroA forms either a discrete EPSP cationic intermediate, or cl transition state with high cationic character. The pH dependence of non-enzymatic EPSP hydrolysis was examined in order to understand the intrinsic reactivity of the enolpyruvyl group. Acid catalysis accelerated EPSP hydrolysis> 10^8-fold. These results provide evidence for enolpyruvyl activation through protonation at C3', forming an unstable cationic intermediate, or a highly cation-like transition state. The incorporation of 2H into EPSP from solvent 2H20 during AreA-catalyzed hydrolysis was much slower than the hydrolysis rate, in the absence of inorganic phosphate in the reaction. This demonstrated that KIEs on AroA-catalyzed EPSP hydrolysis, when they are measured in the future, will reflect protonation of EPSP. A method was developed for KIE measurements on acid-catalyzed EPSP hydrolysis, which showed good reproducibility and no buffer dependence. Further experiments need to be completed on the acid-catalyzed KIEs and enzyme-catalyzed KIEs, followed by transition state analysis. This will precisely define the transition state structure of the enzyme-catalyzed EPSP hydrolysis reaction, and provide a good starting point for designing AroA inhibitors.</p> / Thesis / Master of Science (MSc)
37

Isotopes as Mechanism Spies : Nucleophilic Bimolecular Substitution and Monoamine Oxidase B Catalysed Amine Oxidation Probed with Heavy Atom Kinetic Isotope Effects

MacMillar, Susanna January 2006 (has links)
<p>This thesis concerns the study of reaction mechanisms by means of kinetic isotope effects (KIEs). Studies of the nucleophilic bimolecular substitution (S<sub>N</sub>2) reaction had the dual purpose of improving our fundamental understanding of molecular reactivity and assessing the ability of kinetic isotope effects to serve as mechanistic tools. The transition state of the S<sub>N</sub>2 reaction between a cyanide ion and ethyl chloride in tetrahydrofuran was found to be reactant like and only slightly tighter than has been found previously for the same reaction in dimethyl sulphoxide. One conclusion was that the transition-state structure in this reaction was predicted fairly well by the theoretical calculations, even without solvent modelling. The S<sub>N</sub>2 reactions between cyanide ions and <i>para</i>-substituted benzyl chlorides were found to have reactant-like transition states, of which the C<sub>α</sub>-Cl bond was most influenced by the <i>para</i>-substitution. Theoretical calculations indicated that the chlorine KIEs could be used as probes of the substituent effect on the C<sub>α</sub>-Cl bond if bond fission was not too advanced in the transition state. Furthermore, the nucleophile carbon <sup>11</sup>C/<sup>14</sup>C KIEs were determined for the reactions between cyanide ions and various ethyl substrates in dimethyl sulphoxide.</p><p>Precision conductometry was employed to estimate the aggregation status of tetrabutylammonium cyanide in tetrahydrofuran and in dimethyl sulphoxide, which is of interest as tetrabutylammonium cyanide is frequently used as the nucleophilic reagent in mechanistic investigations and synthetic reactions. The tendency for ion-pair formation was found to be very slight, significant, and very strong in dimethyl sulphoxide, water, and tetrahydrofuran, respectively. </p><p>The nitrogen kinetic isotope effect on monoamine oxidase B catalysed deamination of benzylamine was determined in an attempt to obtain conclusive evidence regarding the mechanism of the oxidation. Monoamine oxidase is an important drug target in connection with the treatment of, for example, depression and Parkinson’s disease, and knowledge on how the enzyme effects catalysis would facilitate the design of highly selective and efficient inhibitors.</p>
38

Isotopes as Mechanism Spies : Nucleophilic Bimolecular Substitution and Monoamine Oxidase B Catalysed Amine Oxidation Probed with Heavy Atom Kinetic Isotope Effects

MacMillar, Susanna January 2006 (has links)
This thesis concerns the study of reaction mechanisms by means of kinetic isotope effects (KIEs). Studies of the nucleophilic bimolecular substitution (SN2) reaction had the dual purpose of improving our fundamental understanding of molecular reactivity and assessing the ability of kinetic isotope effects to serve as mechanistic tools. The transition state of the SN2 reaction between a cyanide ion and ethyl chloride in tetrahydrofuran was found to be reactant like and only slightly tighter than has been found previously for the same reaction in dimethyl sulphoxide. One conclusion was that the transition-state structure in this reaction was predicted fairly well by the theoretical calculations, even without solvent modelling. The SN2 reactions between cyanide ions and para-substituted benzyl chlorides were found to have reactant-like transition states, of which the Cα-Cl bond was most influenced by the para-substitution. Theoretical calculations indicated that the chlorine KIEs could be used as probes of the substituent effect on the Cα-Cl bond if bond fission was not too advanced in the transition state. Furthermore, the nucleophile carbon 11C/14C KIEs were determined for the reactions between cyanide ions and various ethyl substrates in dimethyl sulphoxide. Precision conductometry was employed to estimate the aggregation status of tetrabutylammonium cyanide in tetrahydrofuran and in dimethyl sulphoxide, which is of interest as tetrabutylammonium cyanide is frequently used as the nucleophilic reagent in mechanistic investigations and synthetic reactions. The tendency for ion-pair formation was found to be very slight, significant, and very strong in dimethyl sulphoxide, water, and tetrahydrofuran, respectively. The nitrogen kinetic isotope effect on monoamine oxidase B catalysed deamination of benzylamine was determined in an attempt to obtain conclusive evidence regarding the mechanism of the oxidation. Monoamine oxidase is an important drug target in connection with the treatment of, for example, depression and Parkinson’s disease, and knowledge on how the enzyme effects catalysis would facilitate the design of highly selective and efficient inhibitors.
39

Concerted or Stepwise? : <i>β-Elimination, Nucleophilic Substitution, Copper Catalysed Aziridination and Ruthenium Catalysed Transfer Hydrogenation Studied by Kinetic Isotope Effects and Linear Free-Energy Relationships</i>

Ryberg, Per January 2002 (has links)
<p>This thesis describes the use of kinetic isotope effects, linear free energy relationships and stereochamical studies to distinguish between different mechanistic alternatives and to obtain information about transition state structure.</p><p>In the first part fluorine and deuterium kinetic isotope effects were determined for the base promoted HF elimination from 4-fluoro-4-(4’-nitrophenyl)butane-2-on. During this work a new method for the determination of fluorine kinetic isotope effects was developed. The results from the study demonstrates that the reaction proceeds via an E1cB<sub>ip</sub> mechanism.</p><p>In the second part the transition state structure for the S<sub>N</sub>2 reaction between ethyl chloride and cyanide ion in DMSO was studied. Kinetic isotope effects for six different positions in the reacting system, both in cyanide and ethyl chloride, were determined. The experimental isotope effects were then compared with the theoretically predicted isotope effects. </p><p>The third part describes the use of Hammett type free-energy relationships and stereochemical evidence to study the mechanism of the copper catalysed alkene aziridination. The results from the study support a model that involves the simultaneous presence of two different copper nitrene intermediates. One which reacts non-stereospecifically via a radical intermediate and one which reacts stereospecifically via a concerted mechanism.</p><p>In the fourth part a mechanistic study of the Ru(aminoalcohol) catalysed transfer hydrogenation of acetophenone in isopropanol is described. Kinetic isotope effects were determined for both proton and hydride transfer. The observation of significant primary deuterium kinetic isotope effects for both proton and hydride transfer support a mechanism where the proton and hydride are transferred simultaneously in a concerted mechanism.</p>
40

Advancement and Application of Gas Chromatography Isotope Ratio Mass Spectrometry Techniques for Atmospheric Trace Gas Analysis

Giebel, Brian M 22 July 2011 (has links)
The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure δ13C values for numerous oxygenated volatile organic compounds (OVOCs) having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol’s corn origin and use as an alternative fuel or fuel additive. Results from this effort show that ethanol’s unique isotopic signature can be incorporated into air chemistry models for fingerprinting and source apportionment purposes and can be used as a stable isotopic tracer for biofuel inputs to the atmosphere on local to regional scales.

Page generated in 0.0455 seconds