• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 142
  • 77
  • 25
  • 12
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 471
  • 323
  • 163
  • 89
  • 89
  • 87
  • 87
  • 71
  • 62
  • 59
  • 59
  • 58
  • 55
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Soot microphysical effects on liquid clouds, a multi-model investigation

Koch, Dorothy, Balkanski, Yves, Bauer, Susanne E., Easter, Richard C., Ferrachat, Sylvaine, Ghan, Steven J., Hoose, Corinna, Iversen, Trond, Kirkevåg, Alf, Kristjansson , Jon Egill, Liu , Xiaohong, Lohmann, Ulrike, Menon, Surabi, Quaas, Johannes, Schulz, Michael, Seland , Øyvind, Takemura , Toshihiko, Yan, N. 23 October 2015 (has links) (PDF)
We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is −0.11Wm−2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <±0.06Wm−2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.
82

Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM

Kazil, Jan, Stier , Philip, Zhang, Kai, Quaas, Johannes, Kinne, Stefan, O'Donnell, D., Rast, Sebastian, Esch, Monika, Ferrachat, Sylvaine, Lohmann, Ulrike, Feichter, Johann 27 October 2015 (has links) (PDF)
Nucleation from the gas phase is an important source of aerosol particles in the Earth’s atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosolclimate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth’s radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are −1.15 W/m2 for charged H2SO4/H2O nucleation, −0.235 W/m2 for cluster activation, and −0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is −2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with −2.18 W/m2 to total absorbed solar short-wave radiation, compared to −0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth’s radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.
83

Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930-1989 period

Quaas, Johannes, Dufresne, Jean-Louis, Boucher, Olivier, Le Treut, Hervé 25 November 2015 (has links) (PDF)
Among anthropogenic perturbations of the Earth\'s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930-1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day-1 decade-1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including also the aerosol direct and first indirect effects remains strongly negative.
84

Pollution trends over Europe constrain global aerosol forcing as simulated by climate models

Cherian, Ribu, Quaas, Johannes, Salzmann, Marc, Wild, Martin 14 August 2015 (has links) (PDF)
An increasing trend in surface solar radiation (solar brightening) has been observed over Europe since the 1990s, linked to economic developments and air pollution regulations and their direct as well as cloud-mediated effects on radiation. Here, we find that the all-sky solar brightening trend (1990–2005) over Europe from seven out of eight models (historical simulations in the Fifth Coupled Model Intercomparison Project) scales well with the regional and global mean effective forcing by anthropogenic aerosols (idealized “present-day” minus “preindustrial” runs). The reason for this relationship is that models that simulate stronger forcing efficiencies and stronger radiative effects by aerosol-cloud interactions show both a stronger aerosol forcing and a stronger solar brightening. The all-sky solar brightening is the observable from measurements (4.06 ± 0.60Wm−2 decade−1), which then allows to infer a global mean total aerosol effective forcing at about −1.30Wm−2 with standard deviation ±0.40Wm−2.
85

Global mean cloud feedbacks in idealized climate change experiments

Ringer, Mark A., McAvaney, Bryant J., Andronova, Natasha, Buja, Lawrence E., Esch, Monika, Ingram, William J., Li, Bin, Quaas, Johannes, Roeckner, Erich, Senior, Catherine Ann, Soden, Brian J., Volodin, Evgeny M., Webb, Mark J., Williams, Keith D. 24 November 2015 (has links) (PDF)
Global mean cloud feedbacks in ten atmosphere-only climate models are estimated in perturbed sea surface temperature (SST) experiments and the results compared to doubled CO2 experiments using mixed-layer ocean versions of these same models. The cloud feedbacks in any given model are generally not consistent: the sign of the net cloud radiative feedback may vary according to the experimental design. However, both sets of experiments indicate that the variation of the total climate feedback across the models depends primarily on the variation of the net cloud feedback. Changes in different cloud types show much greater consistency between the two experiments for any individual model and amongst the set of models analyzed here. This suggests that the SST perturbation experiments may provide useful information on the processes associated with cloud changes which is not evident when analysis is restricted to feedbacks defined in terms of the change in cloud radiative forcing.
86

Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century

Dufresne, Jean-Louis, Quaas, Johannes, Boucher, Olivier, Denvil, Sébastien, Fairhead, Laurent 24 November 2015 (has links) (PDF)
In this study, we examine the time evolution of the relative contribution of sulfate aerosols and greenhouse gases to anthropogenic climate change. We use the new IPSL-CM4 coupled climate model for which the first indirect effect of sulfate aerosols has been calibrated using POLDER satellite data. For the recent historical period the sulfate aerosols play a key role on the temperature increase with a cooling effect of 0.5 K, to be compared to the 1.4 K warming due to greenhouse gas increase. In contrast, the projected temperature change for the 21st century is remarkably independent of the effects of anthropogenic sulfate aerosols for the SRES-A2 scenario. Those results are interpreted comparing the different radiative forcings, and can be extended to other scenarios. We also highlight that the first indirect effect of aerosol strongly depends on the land surface model by changing the cloud cover.
87

Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data

Quaas, Johannes, Boucher, Olivier 24 November 2015 (has links) (PDF)
The indirect effects of anthropogenic aerosols are expected to cause a significant radiative forcing of the Earth’s climate whose magnitude, however, is still uncertain. Most climate models use parameterizations for the aerosol indirect effects based on so-called ‘‘empirical relationships’’ which link the cloud droplet number concentration to the aerosol concentration. New satellite datasets such as those from the POLDER and MODIS instruments are well suited to evaluate and improve such parameterizations at a global scale. We derive statistical relationships of cloud-top droplet radius and aerosol index (or aerosol optical depth) from satellite retrievals and fit an empirical parameterization in a general circulation model to match the relationships. When applying the fitted parameterizations in the model, the simulated radiative forcing by the first aerosol indirect effect is reduced by 50% as compared to our baseline simulation (down to -0.3 and -0.4 Wm-2 when using MODIS and POLDER satellite data, respectively).
88

Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing?

Quaas, Johannes, Boucher, Olivier, Bellouin, Nicolas, Kinne, Stefan 24 November 2015 (has links) (PDF)
In their contribution to PNAS, Penner et al. (1) used a climate model to estimate the radiative forcing by the aerosol first indirect effect (cloud albedo effect) in two different ways: first, by deriving a statistical relationship between the logarithm of cloud droplet number concentration, ln Nc, and the logarithm of aerosol optical depth, ln AOD (or the logarithm of the aerosol index, ln AI) for present-day and preindustrial aerosol fields, a method that was applied earlier to satellite data (2), and, second, by computing the radiative flux perturbation between two simulations with and without anthropogenic aerosol sources. They find a radiative forcing that is a factor of 3 lower in the former approach than in the latter [as Penner et al. (1) correctly noted, only their “inline” results are useful for the comparison].
89

Evaluation of the statistical cloud scheme in the ECHAM5 model using satellite data

Weber, Torsten, Quaas, Johannes, Räisänen, Petri 24 November 2015 (has links) (PDF)
An evaluation of a statistical cloud scheme taking into account subgrid-scale variability for water vapour and cloud condensate in the ECHAM5 general circulation model of the atmosphere is presented. Three-dimensional modelled water vapour, cloud liquid water and cloud ice were distributed stochastically into subcolumns of each grid box and vertically integrated to total water path (TWP). Thus the lower atmosphere is emphasized in the evaluation of TWP due to its exponential profile. The edited model dataset was compared with the globally analyzed distribution of TWP measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The results show that the mean TWP and mean cloud cover are on average relatively well simulated. However, large deficiencies are revealed by the evaluation of both variance and skewness of the probability density function (PDF). Systematically negative deviations of variance are found for almost all regions of the globe. Skewness of theTWPis overestimated in the Tropics and underestimated at high latitudes. Moreover, sensitivity experiments were performed to reveal the deficiencies in the parametrization leading to the observed deviations of variance and skewness of TWP. It was found that the positive bias in skewness in the Tropics can be reduced by modifying the influence of convection on the PDF.
90

Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect

Lohmann, Ulrike, Quaas, Johannes, Kinne, Stefan, Feichter, Johann 26 November 2015 (has links) (PDF)
Strategies to detect and attribute aerosol global impacts on clouds and climate from synergetic approaches involving modeling and observational evidence at different spatial and temporal scales.

Page generated in 0.0507 seconds