Spelling suggestions: "subject:"komplexen ginzburglandau ungleichung"" "subject:"komplexen ginzburglandau mungsgleichung""
1 |
Complex Patterns in Extended Oscillatory Systems / Komplexe Muster in ausgedehnten oszillatorischen SystemenBrusch, Lutz 23 October 2001 (has links) (PDF)
Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenüber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und Stabilitätsanalyse werden Instabilitäten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der Grenzübergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklärt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der Kalziumsignalübertragung in Zellen identifiziert.
|
2 |
Complex Patterns in Extended Oscillatory SystemsBrusch, Lutz 14 August 2001 (has links)
Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenüber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und Stabilitätsanalyse werden Instabilitäten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der Grenzübergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklärt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der Kalziumsignalübertragung in Zellen identifiziert.
|
Page generated in 0.1195 seconds