• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monte-Carlo-Simulation der Adsorption amphiphiler Moleküle an Feststoffoberflächen

Reimer, Uwe 10 December 2009 (has links) (PDF)
Die vorliegende Arbeit stellt Ergebnisse von Monte-Carlo-Simulationen zur Adsorption und Selbstorganisation amphiphiler Moleküle an Feststoffoberflächen vor. Ziel der Arbeit ist die Untersuchung des Zusammenhanges zwischen Moleküleigenschaften und thermodynamischen Bedingungen für die Bildung von adsorbierten Aggregaten. Im Rahmen eines coarse grainined-Gittermodells wird die Adsorption von Modelltensiden auf ebenen Oberflächen beschrieben. Es werden hydrophile, hydrophobe und chemisch heterogene Modelloberflächen berücksichtigt. Die Resultate der Simulationen stehen im Einklang mit experimentellen Untersuchungen und liefern Interpretationshilfen für die beobachteten Strukturen. Für den Einsatz von Tensidmischungen bei der Kalziumfluorit-Flotation konnte gezeigt werden, dass die Wirkung des Co-Sammler-Tensids auf einer Adsolubilisation im Adsorptionsfilm beruht.
2

Emergence and persistence of diversity in complex networks

Böhme, Gesa Angelika 02 July 2013 (has links) (PDF)
Complex networks are employed as a mathematical description of complex systems in many different fields, ranging from biology to sociology, economy and ecology. Dynamical processes in these systems often display phase transitions, where the dynamics of the system changes qualitatively. In combination with these phase transitions certain components of the system might irretrievably go extinct. In this case, we talk about absorbing transitions. Developing mathematical tools, which allow for an analysis and prediction of the observed phase transitions is crucial for the investigation of complex networks. In this thesis, we investigate absorbing transitions in dynamical networks, where a certain amount of diversity is lost. In some real-world examples, e.g. in the evolution of human societies or of ecological systems, it is desirable to maintain a high degree of diversity, whereas in others, e.g. in epidemic spreading, the diversity of diseases is worthwhile to confine. An understanding of the underlying mechanisms for emergence and persistence of diversity in complex systems is therefore essential. Within the scope of two different network models, we develop an analytical approach, which can be used to estimate the prerequisites for diversity. In the first part, we study a model for opinion formation in human societies. In this model, regimes of low diversity and regimes of high diversity are separated by a fragmentation transition, where the network breaks into disconnected components, corresponding to different opinions. We propose an approach for the estimation of the fragmentation point. The approach is based on a linear stability analysis of the fragmented state close to the phase transition and yields much more accurate results compared to conventional methods. In the second part, we study a model for the formation of complex food webs. We calculate and analyze coexistence conditions for several types of species in ecological communities. To this aim, we employ an approach which involves an iterative stability analysis of the equilibrium with respect to the arrival of a new species. The proposed formalism allows for a direct calculation of coexistence ranges and thus facilitates a systematic analysis of persistence conditions for food webs. In summary, we present a general mathematical framework for the calculation of absorbing phase transitions in complex networks, which is based on concepts from percolation theory. While the specific implementation of the formalism differs from model to model, the basic principle remains applicable to a wide range of different models.
3

Adaptive-network models of collective dynamics

Zschaler, Gerd 22 June 2012 (has links) (PDF)
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system\'s collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects\' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks\' adaptive response to the agents\' dynamics is sufficiently fast.
4

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems

Schönwetter, Moritz 17 January 2017 (has links) (PDF)
Fractals have long been recognized to be a characteristic feature arising from chaotic dynamics; be it in the form of strange attractors, of fractal boundaries around basins of attraction, or of fractal and multifractal distributions of asymptotic measures in open systems. In this thesis we study fractal and multifractal measure distributions in leaky Hamiltonian systems. Leaky systems are created by introducing a fully or partially transparent hole in an otherwise closed system, allowing trajectories to escape or lose some of their intensity. This dynamics results in intricate (multi)fractal distributions of the surviving trajectories. These systems are suitable models for experimental setups such as optical microcavities or microwave resonators. In this thesis we perform an improved investigation of the fractality in these systems using the concept of effective dimensions. They are defined as the dimensions far from the usually considered asymptotics of infinite evolution time $t$, infinite sample size $S$, and infinite resolution (infinitesimal box-size $varepsilon$). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics of the system. We present a detailed discussion of the behaviour of the numerically observed dimension $D_mathrm{obs}(S,t,varepsilon)$. We show that the three parameters can be expressed in terms of limiting length scales that define the parameter ranges in which $D_mathrm{obs}(S,t,varepsilon)$ is an effective dimension of the system. We provide dynamical and statistical arguments for the dependence of these scales on $S$, $t$, and $varepsilon$ in strongly chaotic systems and show that the knowledge of the scales allows us to define meaningful effective dimensions. We apply our results to three main fields. In the context of numerical algorithms to calculate dimensions, we show that our findings help to numerically find the range of box sizes leading to accurate results. We further show that they allow us to minimize the computational cost by providing estimates of the required sample-size and iteration time needed. A second application field of our results is systems exhibiting non-trivial dependencies of the effective dimension $D_mathrm{eff}$ on $t$ and $varepsilon$. We numerically explore this in weakly chaotic leaky systems. There, our findings provide insight into the dynamics of the systems, since deviations from our predictions based on strongly chaotic systems at a given parameter range are a sign that the stickiness inherent to such systems needs to be taken into account in that range. Lastly, we show that in quantum analogues of chaotic maps with a partial leak, a related effective dimension can be used to explain the numerically observed deviation from the predictions provided by the fractal Weyl law for systems with fully absorbing leaks. Here, we provide an analytical description of the expected scaling based on the classical dynamics of the system and compare it with numerical results obtained in the studied quantum maps. / Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben.
5

Moment-Closure Approximations for Contact Processes in Adaptive Networks / Moment-Abschluss Näherungen für Kontaktprozesse in Adaptiven Netzwerken

Demirel, Güven 02 July 2013 (has links) (PDF)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.
6

Complex Patterns in Extended Oscillatory Systems / Komplexe Muster in ausgedehnten oszillatorischen Systemen

Brusch, Lutz 23 October 2001 (has links) (PDF)
Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenüber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und Stabilitätsanalyse werden Instabilitäten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der Grenzübergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklärt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der Kalziumsignalübertragung in Zellen identifiziert.
7

Interfaces between Competing Patterns in Reaction-diffusion Systems with Nonlocal Coupling / Fronten zwischen konkurrierenden Mustern in Reaktions-Diffusions-Systemen mit nichtlokaler Kopplung

Nicola, Ernesto Miguel 05 October 2002 (has links) (PDF)
In this thesis we investigate the formation of patterns in a simple activator-inhibitor model supplemented with an inhibitory nonlocal coupling term. This model exhibits a wave instability for slow inhibitor diffusion, while, for fast inhibitor diffusion, a Turing instability is found. For moderate values of the inhibitor diffusion these two instabilities occur simultaneously at a codimension-2 wave-Turing instability. We perform a weakly nonlinear analysis of the model in the neighbourhood of this codimension-2 instability. The resulting amplitude equations consist in a set of coupled Ginzburg-Landau equations. These equations predict that the model exhibits bistability between travelling waves and Turing patterns. We present a study of interfaces separating wave and Turing patterns arising from the codimension-2 instability. We study theoretically and numerically the dynamics of such interfaces in the framework of the amplitude equations and compare these results with numerical simulations of the model near and far away from the codimension-2 instability. Near the instability, the dynamics of interfaces separating small amplitude Turing patterns and travelling waves is well described by the amplitude equations, while, far from the codimension-2 instability, we observe a locking of the interface velocities. This locking mechanism is imposed by the absence of defects near the interfaces and is responsible for the formation of drifting pattern domains, i.e. moving localised patches of travelling waves embedded in a Turing pattern background and vice versa.
8

Deterministic transport: from normal to anomalous diffusion

Korabel, Nickolay 01 November 2004 (has links) (PDF)
The way in which macroscopic transport results from microscopic dynamics is one of the important questions in statistical physics. Dynamical systems theory play a key role in a resent advance in this direction. Offering relatively simple models which are easy to study, dynamical systems theory became a standard branch of modern nonequilibrium statistical physics. In the present work the deterministic diffusion generated by simple dynamical systems is considered. The deterministic nature of these systems is more clearly expressed through the dependencies of the transport quantities as functions of systems parameters. For fully hyperbolic dynamical systems these dependencies were found to be highly irregular and, in fact, fractal. The main focus in this work is on nonhyperbolic and on intermittent dynamical systems. First, the climbing sine map is considered which is a nonhyperbolic system with many physical applications. Then we treat anomalous dynamics generated by a paradigmatic subdiffusive map. In both cases these systems display deterministic transport which, under variation of control parameters, is fractal. For both systems we give an explanation of the observed phenomena. The third part of the thesis is devoted to the relation between chaotic and transport properties of dynamical systems. This question lies at the heart of dynamical systems theory. For closed hyperbolic dynamical systems the Pesin theorem links the sum of positive Lyapunov exponents to the Kolmogorov-Sinai entropy. For open hyperbolic systems the escape rate formula is valid. In this work we have formulated generalizations of these formulas for a class of intermittent dynamical systems where the chaotic properties are weaker.

Page generated in 0.2901 seconds