• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utveckling av arbetsmetodik för Design for Assembly genom en exempelprodukt - För produktutveckling

Broström, Samuel January 2021 (has links)
ESAB har beslutat att analysera om en Design For Assembly (DFA) metodik går att implementera med syfte att sänka monteringstiden och utveckla deras produktutvecklings-process (PU-process). Målet för det här projektet är således att presentera hur en arbetsmetodik inom DFA kan tillämpas genom att undersöka en exempelprodukt, rullbock. För att förstå DFA och dess relaterade områden genomfördes en litteraturstudie. Studien utfördes för att få en djupare förståelse där undersökningar gjordes inom vetenskapliga artiklar, böcker och webbkällor. Undersökningarna utfördes med mål att samla information om andra lyckade DFA-implementeringar, tillämpningsområden och riktlinjer. Genomförandet följer en PU-process med DFA som fokus. Till en början av PU-processen framställdes en kravspecifikation och en rotorsaksanalys. En DFA-metodik utnyttjades för att framställa konceptförslag för rullbocken. Metodiken grundar sig i de riktlinjer och frågor som presenterats i litteraturstudien. Resultatet presenteras i former av CAD-ritningar och riktlinjer. CAD-ritningar framställs för att få en förståelse över konceptförslagen och hur metodiken har tillämpats. Riktlinjerna är kortare punkter som bör övervägas av användaren vid utveckling av produkter. Lösningarna viktades mot varandra med hjälp av Pughs matris. Syftet och frågeställningen för projektet har besvarats. En arbetsmetodik och riktlinjer för DFA presenterades genom att undersöka exempelprodukten och en litteraturstudie inom området. / ESAB has decided to analyze whether a Design for Assembly (DFA) methodology can be implemented with the aim of reducing assembly time and developing their product development process (PD-process). The aim of this project is thus to present how a working methodology within DFA can be applied by investigating an example product, roller bed. To understand DFA and its related areas, a literature study was conducted. The study was conducted to gain a deeper understanding where research was done in scientific articles, books, and web sources. The surveys were conducted with the aim of gathering information about other successful DFA implementations, areas of application and guidelines. The implementation follows a PD-process with DFA as the focus. At the beginning of the PD-process, a requirements specification and a rotor case analysis were created. A DFA methodology was used to produce concept proposals for the roller bed. The methodology is based on the guidelines and questions presented in the literature study. The results are presented in the form of CAD drawings and guidelines. CAD drawings were created to gain an understanding of the concept proposals and how the methodology has been applied. The guidelines are shorter steps that should be considered by the user when developing products. The solutions were weighted against each other using Pugh's matrix. The purpose and question of the project have been answered. A working methodology and guidelines for DFA were presented by examining the example product and a literature study in the area.
2

Improving engine oil coolerperformance : For future vehicle applications

Hjälm Wallborg, Martin, Palmgren, Joakim January 2015 (has links)
This thesis describes the process of improving the engine oil cooler performance for future vehicle applications, from ideas to simulated concepts. Increasing market expectations of high engine power, low fuel consumption and high towing capabilities results in an ever rising pressure on the cooling system in modern cars. The desire to prevent a future situation where the engine oil could become too hot, formed the basis for this thesis. The thesis was performed during 10 weeks from March to June 2015, at Volvo Car Corporation in Gothenburg. The working process started with literary studies where the theory behind automotive cooling systems and heat exchangers were studied to increase the general knowledge about the theory. Studies of engine oil, heat transfer and the overall design of engine cooling systems were performed. An important part was to clarify why the oil must not exceed a certain temperature limit. This gave answers to how the oil and engine components would be affected, if the oil did exceed the set temperature limit. To get a clear target and measurable parameters, the goal of this thesis was defined by estimating what the heat transfer demands could be in the future. A competitor analysis was made to examine how and if, the competitors to VCC use a different kind of oil cooling. Generation of concept ideas were made continuously during the early stage of the work process. Concepts that proved to be interesting were analysed more deeply with performance simulations and packaging studies. Five concepts were analysed and the performance simulations indicated that all the presented concepts can reach the heat transfer goal set early in the process. They do however use different methods, and meet the goal with different levels of efficiency. All concepts are listed with their heat transfer performance results and their advantages and disadvantages. The concept that showed to be the most promising in an oil cooling perspective, was to connect an additional heat exchanger in series after the current plate heat exchanger. This is a solution which will support the current engine oil cooler by handling the additional heat produced during certain driving scenarios. The best concept reached a heat transfer rate of 40 kW at half the air flow required by the second best concept. The concepts that has been presented will implicate an alteration of the current oil cooling system design. The lack of available space in the cars will also result in some rearranging of components in order to make space for an additional heat exchanger. The purpose with the concept generation is to present a good foundation from which Volvo can base their future decisions on.

Page generated in 0.0618 seconds