Spelling suggestions: "subject:"kondensierten materie""
1 |
Renormierungsgruppenanalyse des Hubbard-Modells in zwei DimensionenRohe, Daniel, January 2005 (has links) (PDF)
Stuttgart, Univ., Diss., 2005.
|
2 |
Conception and detection of exotic quantum matter in mesoscopic systems / Konzeption und Detektion von exotischer Quantenmaterie in mesoskopischen SystemenFleckenstein, Christoph Thomas January 2020 (has links) (PDF)
In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements.
We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials – a structure we coin anti-wire – are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions. / In der vorliegenden Arbeit untersuchen wir Nanobauteile auf der Basis von topologischen Isolatoren. Diese neue Materialklasse zeichnet sich in erster Linie durch ein isolierendes Inneres aus, während gleichzeitig die Oberfläche leitende Eigenschaften besitzt. Zustände, welche mit diesen leitenden Eigenschaften in Verbindung gebracht werden, können in niedrigster Ordnung durch eine Dirac-Theorie beschrieben werden. Im Falle eines zweidimensionalen topologischen Isolators impliziert das, zusammen mit Zeit-Umkehr Symmetrie, eine helikale Natur dieser Randzustände. Interessante Physik entsteht dann insbesondere, wenn zwei solcher helikalen Randkanalzustände in einer Verengung zusammengeführt werden. Dies hat verschiedene Konsequenzen. Innerhalb der Verengung findet man die gleiche Anzahl an fermionischen Feldern wie man sie auch in einem Quantendraht erwartet. Gleichzeitig besitzt eine solche Konstruktion aber mehr Symmetrien verglichen mit gewöhnlichen Quantendrähten. Außerdem kann eine Verengung in einem zwei-dimensionalen topologischen Isolator auf natürliche Weise helikal kontaktiert werden, so dass spin-aufgelöste Transportmessungen durchgeführt werden können. Diese einzigartige Kombination von Eigenschaften impliziert verschiedenste physikalische Effekte. Wie wir in dieser Arbeit zeigen entsteht in engen Schlitzen, welche in einen homogenen zwei-dimensionalen topologischen Isolator tranchiert werden, eine topologisch supraleitende Phase mit nicht-Abelschen Majorana Moden an den Systemrändern. Diese exotischen Teilchen können mit einem relativ einfachen Transportexperiment nachgewiesen werden, indem man diesen sogenannten Anti-Quantendraht schwach mit einem helikalen Randkanal koppelt und dort die Transportcharakteristiken misst. Die Präsenz von Majorana Moden ist verknüpft mit dem Entstehen von unkonventioneller Supraleitung, insbesondere von sogenannter odd-frequency Supraleitung. Wir zeigen, dass dies vielmehr eine allgemeine Erscheinung in derartigen supraleitenden Strukturen ist. Symmetrien sind von elementarer Bedeutung für viele physikalische Effekte. So führt zum Beispiel die natürlich auftretende Ladungs-Konjugation Symmetrie zusammen mit einem zeit-periodischen elektromagnetischen Feld in topologischen Anti-Quantendrähten zu einer topologischen Floquet Nichtgleichgewichts-Phase, welche wiederum durch Transportmessungen detektiert werden kann. Symmetrien spielen auch und insbesondere für Wechselwirkungseffekte eine wichtige Rolle. Hier ist besonders die Existenz eines Dirac-Punktes von großer Bedeutung. In dessen (energetischer) Nähe ist es möglich wechselwirkungs-induzierte Bandlücken zu erzeugen. Anders als Einteilchen-Bandlücken können wechselwirkungs-induzierte Bandlücken zu einer hohen Grundzustandsentartung führen. Diese wiederum ermöglicht die Entstehung komplexer nicht-Abelscher Teilchen, falls zusätzlich supraleitende Ordnung vorhanden ist. Interessanterweise können derartige Vielteilchen-Bandlücken in unserem System schon bei nur schwacher elektronischer Wechselwirkung auftreten. Dieses untypische Verhalten ermöglicht letztendlich die Entstehung von Z4 parafermionen an Grenzflächen unterschiedlicher Ordnung.
|
3 |
Dynamics and structure of a colloidal glass former in two dimensionsEbert, Florian. January 2008 (has links)
Konstanz, Univ., Diss., 2008.
|
4 |
Quantum dynamics and isotope effects of hydrogen in physico-chemical systems studied with neutron Compton scatteringAbdul-Redah, Tyno. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Berlin.
|
5 |
On the interplay of topology and interaction: A quantum Monte Carlo study / Über das Zusammenspiel von Topologie und Wechselwirkung: Eine Quanten-Monte-Carlo StudieHofmann, Johannes Stephan January 2020 (has links) (PDF)
Adding interactions to topological (non-)trivial free fermion systems can in general have four different effects: (i) In symmetry protected topological band insulators, the correlations may lead to the spontaneous breaking of some protecting symmetries by long-range order that gaps the topological boundary modes. (ii) In free fermion (semi-)metal, the interaction could vice versa also generate long-range order that in turn induces a topological mass term and thus generates non-trivial phases dynamically. (iii) Correlation might reduce the topological classification of free fermion systems by allowing adiabatic deformations between states of formerly distinct phases. (iv) Interaction can generate long-range entangled topological order in states such as quantum spin liquids or fractional quantum Hall states that cannot be represented by non-interacting systems. During the course of this thesis, we use numerically exact quantum Monte Carlo algorithms to study various model systems that (potentially) represent one of the four scenarios, respectively.
First, we investigate a two-dimensional $d_{xy}$-wave, spin-singlet superconductor, which is relevant for high-$T_c$ materials such as the cuprates. This model represents nodal topological superconductors and exhibits chiral flat-band edge states that are protected by time-reversal and translational invariance. We introduce the conventional Hubbard interaction along the edge in order to study their stability with respect to correlations and find ferromagnetic order in case of repulsive interaction as well as charge-density-wave order and/or additional $i$s-wave pairing for attractive couplings. A mean-field analysis that, for the first time, is formulated in terms of the Majorana edge modes suggests that any order has normal and superconducting contributions. For example, the ferromagnetic order appears in linear superposition with triplet pairing. This finding is well confirmed by the numerically exact quantum Monte Carlo investigation.
Second, we consider spinless electrons on a two-dimensional Lieb lattice that are subject to nearest-neighbor Coulomb repulsion. The low energy modes of the free fermion part constitute a spin-$1$ Dirac cone that might be gapped by several mass terms. One option breaks time-reversal symmetry and generates a topological Chern insulator, which mainly motivated this study. We employ two flavors of quantum Monte Carlo methods and find instead the formation of charge-density-wave order that breaks particle-hole symmetry. Additionally, due to sublattices of unequal size in Lieb lattices, this induces a finite chemical potential that drives the system away from half-filling. We argue that this mechanism potentially extends the range of solvable models with finite doping by coupling the Lieb lattice to the target system of interest.
Third, we construct a system with four layers of a topological insulators and interlayer correlation that respects one independent time-reversal and a unitary $\mathbb{Z}_2$ symmetry. Previous studies claim a reduced topological classification from $\mathbb{Z}$ to $\mathbb{Z}_4$, for example by gapping out degenerate zero modes in topological defects once the correlation term is designed properly. Our interaction is chosen according to this analysis such that there should exist an adiabatic deformation between states whose topological invariant differs by $\Delta w=\pm4$ in the free fermion classification. We use a projective quantum Monte Carlo algorithm to determine the ground-state phase diagram and find a symmetry breaking regime, in addition to the non-interacting semi-metal, that separates the free fermion insulators. Frustration reduces the size of the long-range ordered region until it is replaced by a first order phase transition. Within the investigated range of parameters, there is no adiabatic path deforming the formerly distinct free fermion states into each other. We conclude that the prescribed reduction rules, which often use the bulk-boundary correspondence, are necessary but not sufficient and require a more careful investigation.
Fourth, we study conduction electron on a honeycomb lattice that form a Dirac semi-metal Kondo coupled to spin-1/2 degrees of freedom on a Kagome lattice. The local moments are described by a variant of the Balents-Fisher-Girvin model that has been shown to host a ferromagnetic phase and a $\mathbb{Z}_2$ spin liquid at strong frustration. Here, we report the first numerical exact quantum Monte Carlo simulation of the Kondo-coupled system that does not exhibit the negative-sign problem. When the local moments form a ferromagnet, the Kondo coupling induces an anti-ferromagnetic mass term in the conduction-electron system. At large frustration, the Dirac cone remains massless and the spin system forms a $\mathbb{Z}_2$ spin liquid. Owing to the odd number of spins per unit cell, this constitutes a non-Fermi liquid that violates Luttinger's theorem which relates the Fermi volume to the particle density in a Fermi liquid. This phase is a specific realization of the so called 'fractional Fermi liquid` as it has been first introduced in the context of heavy fermion models. / Durch Hinzufügen von Wechselwirkungen zu topologisch (nicht-)trivialen, freien Fermion-systemen können im Allgemeinen vier verschiedene Effekte entstehen: (i) Im Fall von symmetriegeschützen topologischen Bandisolatoren können Korrelationen durch langreichweitige Ordnung einige der schützenden Symmetrien spontan brechen, sodass die topologischen Randzustände eine Bandlücken aufweisen. (ii) In (Halb-)metallen mit freien Elektronen können Wechselwirkungen im Gegenzug langreichweitige Ordnung erzeugen, welche wiederum einen topologischen Massenterm induzieren und so eine nicht-triviale Phase dynamisch erzeugen. (iii) Korrelationen können außerdem zur Reduktion der topologischen Klassifikation freier Fermionsystemen führen, indem sie adiabatische Manipulationen zwischen zuvor verschiedenen Zuständen ermöglichen. (iv) Wechselwirkungen können langreichweitig verschränkte topologische Ordnung in Zuständen wie Quanten-Spin-Flüssigkeiten oder fraktionellen Quanten-Hall-Zuständen erzeugen, die nicht durch wechselwirkungsfreie Systeme dargestellt werden können. Im Laufe dieser Dissertation benutzen wir numerisch-exakte Quanten-Monte-Carlo Algorithmen um verschiedene Modelsysteme zu untersuchen, die (potentiell) eines der vier Szenarien darstellen.
Als Erstes untersuchen wir zwei-dimensionale, $d_{xy}$-Wellen, spin-singlet Supraleiter, die relevant für Hochtemperatur-Supraleiter wie den Cupraten sind. Dieses Model repräsentiert lückenlose Supraleiter und weist chirale dispersionslose Randzustände auf, die durch Zeitumkehr- und Translationssymmetrie geschützt sind. Wir führen die übliche Hubbard-Wechselwirkung entlang des Randes ein um die Stabilität in Bezug auf Korrelationen zu untersuchen und beobachten ferromagnetische Ordnung im Fall von repulsiven Wechselwirkungen sowie Ladungsdichtewellen und/oder zusätzliche $i$s-Wellen-Paarung bei attraktiven Kopplungen. Eine Molekularfeldanalyse, die zum ersten Mal bezüglich der Majorana Randzuständen formuliert wird, deutet an, dass jede Ordnung normale und supraleitende Beiträge enthält. Diese Erkenntnis wird durch die numerisch-exakte Quanten-Monte-Carlo Untersuchung gut bestätigt.
Als Zweites betrachten wir spinlose Elektronen auf einem zwei-dimensionalen Lieb-Gitter die der nächsten-Nachbar Coulombwechselwirkung ausgesetzt sind. Die Niedrigenergiemoden des freien Teilsystems bilden Spin-$1$ Dirac-Fermionen mit verschiedenen möglichen Massentermen. Bei einem davon wird die Zeitumkehrsymmetrie gebrochen und ein topologischer Chern-Isolator erzeugt, was die Hauptmotivation dieser Untersuchen darstellt. Wir verwenden zwei verschiedene Arten der Quanten-Monte-Carlo Methoden und finden stattdessen die Bildung von Ladungsdichtewellenordnung, welche die Teilchen-Loch-Symmetrie bricht. Zusätzlich führt dies, durch die verschieden großen Untergitter die Lieb-Gitters, zu einem endlichen chemischen Potential und treibt das System weg von Halbfüllung. Wir argumentieren, dass dieser Mechanismus möglicherweise die Breite von lösbaren Modellen mit endlicher Dotierung erweitert, indem das Lieb-Gitter an das Zielmodel von Interesse angekoppelt wird.
Als Drittes konstruieren wir ein System, bestehend aus vier Schichten eines topologischen Isolators, mit Wechselwirkungen zwischen den Schichten, das eine unabhängige Zeitumkehr- und eine unitäre $\mathbb{Z}_2$ Symmetrie respektiert. Vorangegangene Untersuchungen legen nahe eine von $\mathbb{Z}$ auf $\mathbb{Z}_4$ reduzierte topologische Klassifikation, zum Beispiel durch das Aufspalten entarteter Nullmoden in topologischen Defekten, sofern die Korrelationen entsprechend entworfen wurden. Unsere Wechselwirkungen sind den Regeln dieser Analysis folgend gewählt, sodass ein adiabatischer Pfad zwischen Zuständen, deren topologische Quantenzahl sich um $\Delta q=\pm4$ unterscheiden, existieren sollte. Wir benutzen einen projektiven Quanten-Monte-Carlo Algorithmus um das Phasendiagramm des Grundzustandes zu bestimmen und erhalten, zusätzlich zum nicht-wechselwirkenden Halbleiter, einen symmetriegebrochenen Bereich der die nicht-wechselwirkenden Isolatoren voneinander trennt. Frustration reduziert die Größe dieser Region mit langreichweitiger Ordnung bis sie durch einen Phasenübergang erster Ordnung ersetzt wird. Im betrachteten Parameterbereich gibt es keinen adiabatischen Pfad, der zuvor verschiedene nicht-wechselwirkende Zustände ineinander überführt. Wir schließen daraus, dass die beschriebenen Regel zur Reduktion, die oft die Korrespondenz zwischen dem Probeninneren und dem Rand verwenden, notwendig aber nicht hinreichend sind und dass es hierzu weiterer Studien bedarf.
Als Viertes betrachten wir Leitungselektronen auf einem Honigwabengitter, die einen Dirac Halbleiter verkörpern, und Kondo-gekoppeln diese mit Spin-$1/2$ Freiheitsgraden auf einem Kagomegitter. Die lokalen Momente werden durch eine Variante des Balents-Fisher-Girvin Models beschrieben, welches nachweislich eine ferromagnetische Phase und eine $\mathbb{Z}_2$ Spinflüssigkeit bei starker Frustration beherbergt. Wir berichten hier über die erste numerisch-exakte Quanten-Monte-Carlo Simulation des Kondo-gekoppelten Systems, die kein negatives Vorzeichenproblem aufweist. Wenn die lokalen Momente einen Ferromagneten bilden, überträgt dies einen antiferromagnetischen Massenterm auf das System der Leitungselektronen. Bei starker Frustration bleiben die Dirac-Fermionen masselos und das Spinsystem bildet eine $\mathbb{Z}_2$ Spinflüssigkeit. Aufgrund der ungeraden Anzahl von Spin-Freiheitsgraden pro Einheitszelle stellt dies keine Fermiflüssigkeit dar und verletzt das Theorem von Luttinger, dass das Fermivolumen mit der Teilchendichte der Fermiflüssigkeit verbindet. Diese Phase ist eine spezielle Realisation der sogenannten `fraktionellen Fermiflüssigkeit' die zuerst im Zusammenhang mit Schwerfermion-Systeme eingeführt worden ist.
|
6 |
Colloids as model systems for condensed matter investigation of structural and dynamical properties of colloidal systems using digital video microscopy and optical tweezers /Baumgartl, Jörg, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
|
7 |
Hybrid Quantum Monte Carlo for Condensed Matter Models / Hybrid-Quanten-Monte-Carlo für Modelle der kondensierten MaterieBeyl, Stefan January 2020 (has links) (PDF)
In this thesis we consider the hybrid quantum Monte Carlo method for simulations of the Hubbard and Su-Schrieffer-Heeger model. In the first instance, we discuss the hybrid quantum Monte Carlo method for the Hubbard model on a square lattice. We point out potential ergodicity issues and provide a way to circumvent them by a complexification of the method. Furthermore, we compare the efficiency of the hybrid quantum Monte Carlo method with a well established determinantal quantum Monte Carlo method for simulations of the half-filled Hubbard model on square lattices. One reason why the hybrid quantum Monte Carlo method loses the comparison is that we do not observe the desired sub-quadratic scaling of the numerical effort. Afterwards we present a formulation of the hybrid quantum Monte Carlo method for the Su-Schrieffer-Heeger model in two dimensions. Electron-phonon models like this are in general very hard to simulate using other Monte Carlo methods in more than one dimensions. It turns out that the hybrid quantum Monte Carlo method is much better suited for this model . We achieve favorable scaling properties and provide a proof of concept. Subsequently, we use the hybrid quantum Monte Carlo method to investigate the Su-Schrieffer-Heeger model in detail at half-filling in two dimensions. We present numerical data for staggered valence bond order at small phonon frequencies and an antiferromagnetic order at high frequencies. Due to an O(4) symmetry the antiferromagnetic order is connected to a superconducting charge density wave. Considering the Su-Schrieffer-Heeger model without tight-binding hopping reveals an additional unconstrained Z_2 gauge theory. In this case, we find indications for π-fluxes and a possible Z_2 Dirac deconfined phase as well as for a columnar valence bond ordered state at low phonon energies. In our investigations of the several phase transitions we discuss the different possibilities for the underlying mechanisms and reveal first insights into a rich phase diagram. / In der vorliegenden Arbeit betrachten wir die Hybrid-Quanten-Monte-Carlo-Methode für Simulationen des Hubbard- sowie des Su-Schrieffer-Heeger-Modells. Zunächst diskutieren wir die Hybrid-Quanten-Monte-Carlo-Methode am Beispiel des Hubbard-Modells auf dem Quadratgitter. Wir zeigen mögliche Ergodizitätsprobleme auf und präsentieren eine Möglichkeit, diese durch Verwendung komplexwertiger Hilfsfelder zu vermeiden. Für Simulationen des halbgefüllten Hubbard-Modells auf Quadratgittern vergleichen wir die Effizienz der Hybrid-Quanten-Monte-Carlo-Methode mit der einer weit verbreiteten und gebräuchlichen Determinanten-Quanten-Monte-Carlo-Methode. Ein Grund für die Niederlage der Hybrid-Quanten-Monte-Carlo-Methode in diesem Vergleich ist die Skalierung des benötigten Rechenaufwandes. Die erhoffte sub-quadratische Skalierung in Abhängigkeit von Systemgröße und inverser Temperatur wird nicht beobachtet. Anschließend präsentieren wir eine Formulierung der Hybrid-Quanten-Monte-Carlo-Methode zur Untersuchung des halbgefüllten Su-Schrieffer-Heeger-Modells in zwei Dimensionen. Elektron-Phonon-Modelle wie dieses sind in mehr als einer Dimension für gewöhnlich mit anderen Quanten-Monte-Carlo-Methoden nur schwer simulierbar. Es stellt sich heraus, dass sich die Hybrid-Quanten-Monte-Carlo-Methode deutlich besser zur Simulation dieses Modells eignet. Wir erreichen eine vorteilhafte Skalierung des Rechenaufwandes und präsentieren einen Machbarkeitsnachweis. Folglich verwenden wir die Hybrid-Quanten-Monte-Carlo-Methode für nähere Untersuchungen des Su-Schrieffer-Heeger-Modells. Wir zeigen numerische Resultate für eine gestaffelte Ordnung aus Valenzbindungen bei kleinen Phononfrequenzen und für eine antiferromagnetischen Ordnung bei hohen Frequenzen. Aufgrund einer O(4)-Symmetrie ist die antiferromagnetische Ordnung mit einer supraleitenden Ladungsdichtewelle verknüpft. Ohne Tight-Binding-Hüpfparameter offenbart das Su-Schrieffer-Heeger-Modell eine zusätzliche spezielle Z_2 -Eichsymmetrie, die nicht den Satz von Gauß erfüllt. In diesem Fall finden wir Hinweise für einen π-Flux-Zustand. Bei niedrigen Phononenergien gibt es außerdem Anzeichen für einen möglichen Z_2 Dirac deconfined Zustand sowie eine spaltenweise Ordnung von Valenzbindungen. Bei Untersuchungen der Phasenübergänge beleuchten wir die möglichen Mechanismen, die den Übergängen zugrunde liegen. Zum Abschluss diskutieren wir das vielfältige Phasendiagramm, in welches wir erste Einblicke ermöglichen.
|
8 |
Superconducting Hybrids at the Quantum Spin Hall Edge / Supraleitende Hybrid-Strukturen auf Basis von Quanten-Spin-Hall-RandzuständenLundt, Felix Janosch Peter January 2020 (has links) (PDF)
This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with $s$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies. / Diese Dissertation behandelt Strukturen auf der Grundlage von Quanten-Spin-Hall-Isolatoren, in denen deren Randzustände mit supraleitender und magnetischer Ordnung in Verbindung gebracht werden. Quanten-Spin-Hall-Isolatoren sind Beispiele für Systeme in der Festkörperphysik, deren physikalische Eigenschaften auf die topologische Struktur der Energiebänder zurückzuführen sind. Eine bemerkenswerte Konsequenz daraus ist die Entstehung von besonderen Randzuständen an der Oberfläche. Im Fall der zweidimensionalen Quanten-Spin-Hall-Isolatoren sind diese eindimensional und bestehen aus leitenden, metallischen Zuständen von gegenläufigen Elektronen mit entgegengesetztem Spin -- sogenannte helikale Randzustände. Sie bergen großes Potenzial für Anwendungen in der Spintronik, bei der Informationen nicht durch die Ladung, sondern den Spin von Elektronen übertragen werden, und als Plattform für Quantencomputer. Am Beginn der Dissertation werden eindimensionale topologische Supraleiter allgemeiner besprochen. Ausgehend von der Kitaev-Kette und einem kontinuierlichen Modell werden grundlegende Konzepte anschaulich eingeführt, insbesondere im Hinblick auf die topologische Unterscheidung von trivialer und nicht-trivialer Phase und dem Auftreten von Majorana-Zuständen an deren Enden. Letztere sind die entscheidenden Bausteine auf dem Weg zu geschützten Operationen für Quanten-Bits. Da Randzustände von Quanten-Spin-Hall-Isolatoren im Zusammenspiel mit $s$-Wellen-Supraleitung und Magnetismus eine Möglichkeit für die Realisierung eines solchen eindimensionalen topologischen Supraleiters ist, wird in der Folge untersucht, unter welchen Bedingungen Majorana-Zustände auftreten können. Es wird gezeigt, dass dies zwischen Gebieten geschieht, in denen die Randzustände entweder nur von Supraleitung oder von Supraleitung und Magnetismus beeinflusst werden. In Systemen mit mehr als einer supraleitenden Region spielt die Phasendifferenz dabei eine übergeordnete Rolle und kann sogar dazu benutzt werden, Majorana-Zustände zu manipulieren. Weiterhin behandelt die Dissertation die Auswirkungen der helikalen Randzustände auf anomale Korrelationsfunktionen, die von der Supraleitung induziert werden. Es zeigt sich, dass Helizität und Magnetismus deren Eigenschaften bereichern können und unkonventionelle, exotische Paarungs-Mechanismen auftreten. Zusätzlich wird ein Zusammenhang zu Majorana-Zuständen demonstriert. Abschließend wird eine mögliche thermoelektrische Anwendung eines hybriden Systems besprochen, die die besonderen supraleitenden Eigenschaften ausnutzt, um eine Temperaturdifferenz zur Erzeugung von Cooper-Paaren mit Spin-Polarisierung zu verwenden. Diese stellen im Rahmen der supraleitenden Spintronik vielversprechende Einheiten zur verlustarmen Übertragung von Informationen dar.
|
9 |
Aufbau einer Pulslaserdepositions-(PLD)-anlage und Untersuchungen zur PLD in den MAX-Phasen-Systemen Ti-Si-C, Cr-Al-C und Ti-Al-N / Set-up of a Pulsed Laser Deposition (PLD) facility and investigations on the PLD in the MAX phase systems Ti-Si-C, Cr-Al-C and Ti-Al-NLange, Christian 12 June 2009 (has links)
No description available.
|
10 |
Combining site-directed spin labeling EPR spectroscopy and biomolecular simulations to study conformation and dynamics of membrane proteinsKlose, Daniel 29 January 2015 (has links)
Understanding the conformational and dynamic changes of biomacromolecular complexes in different states, such as the membrane protein photoreceptor-transducer complex NpSRII/NpHtrII, is a key step to gaining insight into the functional mechanism of these important classes of protein complexes, since ~30 % of the human proteome are membrane proteins, yet they are largely underrepresented in terms of structural information with <1 % of all structures in the protein data bank. Hence for the development of methods suitable to study the conformation and dynamics of such complexes there is a strong demand and a vast potential field of applications. Here we combined method development at the interface between biomolecular simulations and model-based analysis of EPR- and fluorescence spectroscopic data with application studies using state-of-the-art spectroscopic techniques in conjunction with site-directed spin- or fluorescence labeling.
In an initial benchmark study on the rigid globular protein complex Rpo4/7, we compared experimental inter fluorescence label distances or spin label distance distributions to a variety of predicted inter label distances based on molecular dynamics simulations, Monte Carlo sampling and a discrete rotamer library analysis. We found that while for the molecular dynamics simulations with explicit solvent considerable sampling challenges have to be overcome to reproduce the experimentally observed inter label distance distributions, the Monte Carlo sampling performed well when compared to the experimental data and was computationally less demanding. Significantly more efficient and equally accurate for our examples was the so-called rotamer library analysis available for the spin labels since it relies on a pre-calculated set of rotational isomers. In general, predictions for the mean distances were in agreement within the error margins while distribution shapes were more challenging to reproduce. Overall this study shows a positive evaluation for the assessed tools and the developed simulation protocols as well as their potential applications.
Using the combination of EPR and fluorescence spectroscopy for distance determination we studied the structural influence of RNA binding on Rpo4/7, and showed that the protein complex stays conformationally rigid and thereby serves as a guiding rail for the nascent RNA chain that leaves the RNA polymerase along the Rpo4/7 RNA binding interface.
To enhance the interpretation of experimentally determined changes of conformation and dynamics in protein complexes and to discuss the observed changes in terms of structural information, we built models of the two transcription factors TFE and the Spt4/5 complex, as well as of Argonaute, a 713 amino acid four-domain protein nuclease from Methanocaldococcus jannaschii. These structural models not only allowed a more accurate planning of fluorescence or EPR labeling experiments, but also the models enabled the discussion of the experimental data in structural terms. Based on such an initial structure further computational analysis techniques may be applied to identify putative structural changes or dynamic modes. This was shown for the histidine transporter HisQMP2, where we combined normal mode analysis to model protein flexibility with the rotamer library analysis to screen for possible conformational changes in comparison to experimental inter spin distance data. The most prominent agreement with one mode led to a working hypothesis of a conformational change and provides the basis for validation in future experiments.
Due to the inherent synergy effects, we applied a combined experimental and simulation approach for the EPR-based distance determination in the globular DNA-binding protein LexA to probe conformation and dynamics of the N-terminal DNA-binding domains with respect to the C-terminal domains within the LexA homodimer. While the C-terminal dimerization domains exhibit a well-defined conformation that proved to be independent of DNA-binding, large-scale changes in conformation and dynamics were detected for the N-terminal domains. They were only found in a defined conformation when bound to DNA while in its absence a large rotational freedom of the entire N-terminal domains contributed to the conformational ensemble. Combined with a biochemical characterization of the autocatalytic cleavage of LexA, our data explains how LexA induces the SOS response after DNA damage or under latent antibiotic stress.
We further studied the membrane photoreceptor-transducer complex NpSRII/NpHtrII that governs the light-dependent swimming behavior in Natronomonas pharaonis by a two-component signaling system. This system comprises extraordinary features of sensitivity, signal amplification, integration and transducer cooperativity, yet the molecular details of these features are poorly understood, as is signal propagation itself. By combining time-resolved cw EPR spectroscopy of NpSRII/NpHtrII variants spin labeled in the HAMP1 domain with time-resolved optical absorbance spectroscopy to report on the receptor signaling state, we found a tight kinetic coupling of receptor and transducer during the relaxation back to the ground state and hence a prolonged activation period, that with ~500 - ~700 ms is sufficiently long to cause phosphorylation bursts of the cognate kinase CheA. This explains signal amplification already on the level of the NpSRII/NpHtrII dimers. We further determined the transient difference spectra from the time-resolved EPR data that show local differences in dynamics and steric restrictions upon light-activation. Comparing these experimentally observed differences to predictions confirms the assumed two-state structural model and shows this transition between the two states for a single HAMP domain in a light-dependent manner. Additionally, our approach integrates a dynamic view into the model, since the two states are shown to exhibit different local dynamics in a fashion described previously as a competing model for signaling by dynamic differences based on biochemical studies. Here we show unification of the two models into one congruent description encompassing a transition between the two previously suggested states by concerted structural and dynamic changes.
In an independent analysis using all-atom and coarse grained molecular dynamics of the NpSRII/NpHtrII complex in the minimal unit that can exert kinase control, the trimer of receptor-transducer dimers, we revealed a distinct dynamical pattern encoded in the primary sequence of the coiled-coil heptad-repeats. Upon receptor activation, these segments alter their dynamics in a concerted fashion with regions such as HAMP1 and the adaptation region becoming more compact, while HAMP2 and the tip become more dynamic, leading to dynamic and to limited structural changes at the CheA-kinase binding sites. Together with an extensive validation against experimental data, these findings suggest the altered dynamics as the mechanism for signal propagation along the extended coiled-coil structure of NpHtrII. This working model, that explains the current body of experimental data, allows for further refinement by all-atom molecular dynamics and provides a basis to devise future experiments for validation.
The presented studies outline the versatile methodology of combined experimental and simulation approaches to analyze the conformation and dynamics of biomacromolecules including membrane protein complexes.
|
Page generated in 0.1223 seconds