• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 14
  • 14
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tikhonov regularization with oversmoothing penalties

Gerth, Daniel 21 December 2016 (has links) (PDF)
In the last decade l1-regularization became a powerful and popular tool for the regularization of Inverse Problems. While in the early years sparse solution were in the focus of research, recently also the case that the coefficients of the exact solution decay sufficiently fast was under consideration. In this paper we seek to show that l1-regularization is applicable and leads to optimal convergence rates even when the exact solution does not belong to l1 but only to l2. This is a particular example of over-smoothing regularization, i.e., the penalty implies smoothness properties the exact solution does not fulfill. We will make some statements on convergence also in this general context.
2

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd 10 March 2016 (has links) (PDF)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
3

Facetten der Konvergenztheorie regularisierter Lösungen im Hilbertraum bei A-priori-Parameterwahl

Schieck, Matthias 22 April 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Konvergenztheorie für die regularisierten Lösungen inkorrekter inverser Probleme bei A-priori-Parameterwahl im Hilbertraum. Zunächst werden bekannte Konvergenzratenresultate basierend auf verallgemeinerten Quelldarstellungen systematisch zusammengetragen. Danach wird sich mit dem Fall befasst, was getan werden kann, wenn solche Quellbedingungen nicht erfüllt sind. Man gelangt zur Analysis von Abstandsfunktionen, mit deren Hilfe ebenfalls Konvergenzraten ermittelt werden können. Praktisch wird eine solche Abstandsfunktion anhand der Betrachtung einer Fredholmschen Integralgleichung 2. Art abgeschätzt. Schließlich werden die Zusammenhänge zwischen bedingter Stabilität, Stetigkeitsmodul und Konvergenzraten erörtert und durch ein Beispiel zur Laplace-Gleichung untermauert. / This dissertation deals with the convergence theory of regularized solutions of ill-posed inverse problems in Hilbert space with a priori parameter choice. First, well-known convergence rate results based on general source conditions are brought together systematically. Then it is studied what can be done if such source conditions are not fulfilled. One arrives at the analysis of distance functions. With their help, convergence rates can be determined, too. As an example, a distance function is calculated by solving a Fredholm integral equation of the second kind. Finally, the cross-connections between conditional stability, the modulus of continuity and convergence rates is treated accompanied with an example concerning the Laplace equation.
4

Parameter choice in Banach space regularization under variational inequalities

Hofmann, Bernd, Mathé, Peter 17 April 2012 (has links) (PDF)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
5

Generalized Tikhonov regularization

Flemming, Jens 01 November 2011 (has links) (PDF)
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
6

Optimal rates for Lavrentiev regularization with adjoint source conditions

Plato, Robert, Mathé, Peter, Hofmann, Bernd January 2016 (has links)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
7

Generalized Tikhonov regularization: Basic theory and comprehensive results on convergence rates

Flemming, Jens 27 October 2011 (has links)
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
8

Parameter choice in Banach space regularization under variational inequalities

Hofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
9

Tikhonov regularization with oversmoothing penalties

Gerth, Daniel 21 December 2016 (has links)
In the last decade l1-regularization became a powerful and popular tool for the regularization of Inverse Problems. While in the early years sparse solution were in the focus of research, recently also the case that the coefficients of the exact solution decay sufficiently fast was under consideration. In this paper we seek to show that l1-regularization is applicable and leads to optimal convergence rates even when the exact solution does not belong to l1 but only to l2. This is a particular example of over-smoothing regularization, i.e., the penalty implies smoothness properties the exact solution does not fulfill. We will make some statements on convergence also in this general context.
10

The impact of a curious type of smoothness conditions on convergence rates in l1-regularization

Bot, Radu Ioan, Hofmann, Bernd 31 January 2013 (has links) (PDF)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.

Page generated in 0.2757 seconds