Spelling suggestions: "subject:"lineares inverse botprobleme"" "subject:"lineares inverse darmprobleme""
1 |
Facetten der Konvergenztheorie regularisierter Lösungen im Hilbertraum bei A-priori-ParameterwahlSchieck, Matthias 22 April 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Konvergenztheorie für die regularisierten Lösungen inkorrekter inverser Probleme bei
A-priori-Parameterwahl im Hilbertraum. Zunächst werden bekannte Konvergenzratenresultate basierend auf verallgemeinerten Quelldarstellungen systematisch
zusammengetragen. Danach wird sich mit dem Fall befasst, was getan werden kann, wenn solche Quellbedingungen nicht erfüllt sind. Man gelangt
zur Analysis von Abstandsfunktionen, mit deren Hilfe ebenfalls Konvergenzraten ermittelt werden können. Praktisch wird eine solche
Abstandsfunktion anhand der Betrachtung einer Fredholmschen Integralgleichung 2. Art abgeschätzt. Schließlich werden die Zusammenhänge zwischen
bedingter Stabilität, Stetigkeitsmodul und Konvergenzraten erörtert und durch ein Beispiel zur Laplace-Gleichung untermauert. / This dissertation deals with the convergence theory of regularized solutions
of ill-posed inverse problems in Hilbert space with a priori parameter choice.
First, well-known convergence rate results based
on general source conditions are brought together systematically. Then
it is studied what can be done if such source conditions
are not fulfilled. One arrives at the analysis
of distance functions. With their help, convergence
rates can be determined, too. As an example, a distance function is calculated by
solving a Fredholm integral equation of the second kind. Finally, the cross-connections
between conditional stability, the modulus of continuity and
convergence rates is treated accompanied with an example
concerning the Laplace equation.
|
2 |
Facetten der Konvergenztheorie regularisierter Lösungen im Hilbertraum bei A-priori-ParameterwahlSchieck, Matthias 09 April 2010 (has links)
Die vorliegende Arbeit befasst sich mit der Konvergenztheorie für die regularisierten Lösungen inkorrekter inverser Probleme bei
A-priori-Parameterwahl im Hilbertraum. Zunächst werden bekannte Konvergenzratenresultate basierend auf verallgemeinerten Quelldarstellungen systematisch
zusammengetragen. Danach wird sich mit dem Fall befasst, was getan werden kann, wenn solche Quellbedingungen nicht erfüllt sind. Man gelangt
zur Analysis von Abstandsfunktionen, mit deren Hilfe ebenfalls Konvergenzraten ermittelt werden können. Praktisch wird eine solche
Abstandsfunktion anhand der Betrachtung einer Fredholmschen Integralgleichung 2. Art abgeschätzt. Schließlich werden die Zusammenhänge zwischen
bedingter Stabilität, Stetigkeitsmodul und Konvergenzraten erörtert und durch ein Beispiel zur Laplace-Gleichung untermauert. / This dissertation deals with the convergence theory of regularized solutions
of ill-posed inverse problems in Hilbert space with a priori parameter choice.
First, well-known convergence rate results based
on general source conditions are brought together systematically. Then
it is studied what can be done if such source conditions
are not fulfilled. One arrives at the analysis
of distance functions. With their help, convergence
rates can be determined, too. As an example, a distance function is calculated by
solving a Fredholm integral equation of the second kind. Finally, the cross-connections
between conditional stability, the modulus of continuity and
convergence rates is treated accompanied with an example
concerning the Laplace equation.
|
3 |
Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen DifferentialgleichungenShao, Yuanyuan 17 January 2013 (has links) (PDF)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert.
Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.
|
4 |
Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen DifferentialgleichungenShao, Yuanyuan 14 January 2013 (has links)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert.
Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.
|
Page generated in 0.0879 seconds