• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of shearing in the melt on the morphology and mechanical behaviour of Kraton 1101.

Dickson, Alexander George. January 1972 (has links)
No description available.
2

The effect of shearing in the melt on the morphology and mechanical behaviour of Kraton 1101.

Dickson, Alexander George. January 1972 (has links)
No description available.
3

Gesteinseinschlüsse unterschiedlicher Zusammensetzung in den Peninsular Gneisen Südindiens isotopengeochemische Untersuchungen zu ihrer Stellung im Geosystem Dharwar Kraton /

Deters-Itzelsberger, Peter. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--München.
4

Geochemistry of Palaeoarchaean to Palaeoproterozoic Kaapvaal Craton marine shales: Implications for sediment provenance and siderophile elements endowment / Geochemie paläoarchaischer bis paläoproterozoischer mariner Tonschiefer des Kaapvaal Kratons: Hinweise auf Sediment Provenienz und Anreicherung an siderophilen Elementen

Nwaila, Tsundukani Glen January 2017 (has links) (PDF)
The Kaapvaal Craton hosts a number of large gold deposits (e.g. Witwatersrand Supergroup) which mining companies have exploited at certain stratigraphic positions. It also hosts the largest platinum group element (PGE) deposits (e.g. Bushveld Igneous Complex) which mining companies have exploited in different mineralised layered magmatic zones. In spite of the extensive exploration history in the Kaapvaal Craton, the origin of the Witwatersrand gold deposits and Bushveld Igneous Complex PGE deposits has remained one of the most debated topics in economic geology. The goal of this study was to identify the geochemical characteristics of marine shales in the Barberton, Witwatersrand, and Transvaal supergroups in South Africa in order to make inferences on their sediment provenance and siderophile element endowments. Understanding why some of the Archaean and Proterozoic hinterlands are heavily mineralised, compared to others with similar geological characteristics, will aid in the development of more efficient exploration models. Fresh, unmineralised marine shales from the Barberton (Fig Tree and Moodies groups), Witwatersrand (West Rand and Central Rand groups), and Transvaal (Black Reef Formation and Pretoria Group) supergroups were sampled from drill core and underground mining exposures. Analytical methods, such as X-ray powder diffraction (XRD), optical microscopy, X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and electron microprobe analysis (EMPA) were applied to comprehensively characterise the shales. All of the Au and PGE assays examined the newly collected shale samples. The Barberton Supergroup shales consist mainly of quartz, illite, chlorite, and albite, with diverse heavy minerals, including sulfides and oxides, representing the minor constituents. The regionally persistent Witwatersrand Supergroup shales consist mainly of quartz, muscovite, and chlorite, and also contain minor constituents of sulfides and oxides. The Transvaal Supergroup shales comprise quartz, chlorite, and carbonaceous material. Major, trace (including rare-earth element) concentrations were determined for shales from the above supergroups to constrain their source and post-depositional evolution. Chemical variations were observed in all the studied marine shales. Results obtained from this study revealed that post-depositional modification of shale chemistry was significant only near contacts with over- and underlying coarser-grained siliciclastic rocks and along cross-cutting faults, veins, and dykes. Away from such zones, the shale composition remained largely unaltered and can be used to draw inferences concerning sediment provenance and palaeoweathering in the source region and/or on intrabasinal erosion surfaces. Evaluation of weathering profiles through sections of the studied supergroups revealed that the shales therein are characterised by high chemical index of alteration (CIA), chemical index of weathering (CIW), and index of compositional variability (ICV), suggesting that the source area was lithologically complex and subject to intense chemical weathering. A progressive change in the chemical composition was identified, from a dominant ultramafic–mafic source for the Fig Tree Group to a progressively felsic–plutonic provenance for the Moodies Group. The West Rand Group of the Witwatersrand Supergroup shows a dominance of tonalite–trondhjemite–granodiorite and calcalkaline granite sources. Compositional profiles through the only major marine shale unit within the Central Rand Group indicate the progressive unroofing of a granitic source in an otherwise greenstone-dominated hinterland during the course of sedimentation. No plausible likely tectonic setting was obtained through geochemical modelling. However, the combination of the systematic shale chemistry, geochronology, and sedimentology in the Witwatersrand Supergroup supports the hypothesised passive margin setting for the >2.98 to 2.91 Ga West Rand Group, and an active continental margin source for the overlying >2.90 to 2.78 Ga Central Rand Group, along with a foreland basin setting for the latter. Ultra-low detection limit analyses of gold and PGE concentrations revealed a variable degree of gold accumulation within pristine unmineralised shales. All the studied shales contain elevated gold and PGE contents relative to the upper continental crust, with marine shales from the Central Rand Group showing the highest Au (±9.85 ppb) enrichment. Based on this variation in the provenance of contemporaneous sediments in different parts of the Kaapvaal Craton, one can infer that the siderophile elements were sourced from a fertile hinterland, but concentrated into the marine shales by a combination of different processes. It is proposed that accumulation of siderophile elements in the studied marine shales was mainly controlled by mechanical coagulation and aggregation. These processes involved suspended sediments, fine gold particles, and other trace elements being trapped in marine environments. Mechanical coagulation and aggregation resulted in gold enrichments by 2–3 orders of magnitude, whereas some of the gold in these marine shales can be reconciled by seawater adsorption into sedimentary pyrite. For the source of gold and PGEs in the studied marine shales in the Kaapvaal Craton, a genetic model is proposed that involves the following: (1) A highly siderophile elements enriched upper mantle domain, herein referred to as “geochemically anomalous mantle domain”, from which the Kaapvaal crust was sourced. This mantle domain enriched in highly siderophile elements was formed either by inhomogeneous mixing with cosmic material that was added during intense meteorite bombardment of the Hadaean to Palaeoarchaean Earth or by plume-like ascent of relics from the core–mantle boundary. In both cases, elevated siderophile elements concentrations would be expected. The geochemically anomalous mantle domain is likely the ultimate source of the Witwatersrand modified palaeoplacer gold deposits and was tapped again ca. 2.054 Ga during the emplacement of the Bushveld Igneous Complex. Therefore, I propose that there is a genetic link (i.e. common geochemically anomalous mantle source) between the Witwatersrand gold deposits and the younger Bushveld Igneous Complex PGE deposits. (2) Scavenging of crustal gold by various surface processes such as trapping of gold from Archaean/Palaeoproterozoic river water on the surface of local photosynthesizing cyanobacterial or microbial mats, and reworking of these mats into erosion channels during flooding events. The above two models complement each other, with model (1) providing a common geological source for the Witwatersrand gold and Bushveld Igneous Complex PGE deposits, and model (2) explaining the processes responsible for Witwatersrand-type gold pre-concentration processes. In sequences such as the Transvaal Supergroup, a less fertile hinterland and/or less reworking of older sediments led to a correspondingly lower gold endowment. These findings indicate temporal distribution of siderophile elements in the upper crust (e.g. marine shales). The overall implications of these findings are that background concentrations of gold and PGEs can be used to target potential exploration areas in other cratons of similar age. This increases the likelihood of finding other Witwatersrand-type gold or Bushveld Igneous Complex-type PGE deposits in other cratons. / Der Kaapvaal Kraton beherbergt eine Vielzahl großer Goldlagerstätten (vor allem in der Witwatersrand Hauptgruppe), die von Bergbaugesellschaften in ihrer jeweiligen stratigraphischen Position abgebaut werden. Im diesem Kraton liegen auch die größten Lagerstätten für Platingruppenelemente (vornehmlich im Bushveld Komplex), die aus diversen magmatischen Intrusionskörpern gewonnen werden. Trotz der intensiven und langen Explorationsgeschichte im Bereich des Kaapvaal Kratons ist die Herkunft des Goldes in den Witwatersrand Lagerstätten und die der Platingruppenelemente in den Lagerstätten des Bushveld-Komplex noch ungeklärt und Gegenstand aktueller Diskussionen. Ziel der Arbeit war die geochemische Charakterisierung von Tonschiefern in den Barberton-, Witwatersrand und Transvaal-Hauptgruppen, um Aussagen über deren Provenienz zu treffen und die Gehalte an siderophilen Elementen darin zu ermitteln. Ein verbessertes Verständnis, warum manche archaischen und proterozoischen Einheiten stark mineralisiert sind und andere nicht, sollte bei der Planung zukünftiger Explorationsprojekte dienlich sein. Um dieses Ziel zu erreichen, wurden unalterierte und nicht mineralisierte Proben mariner Tonschiefer aus der Barberton Hauptgruppe (Fig Tree und Moodies Gruppen), der Witwatersrand Hauptgruppe (West Rand und Central Rand Gruppen) und der Transvaal Hauptgruppe (Black Reef Formation und Pretoria Gruppe) aus Untertage Bergbau-Bereichen sowie aus Bohrkernen genommen. Zur Charakterisierung der Tonschiefer kamen verschiedene Methoden zum Einsatz, darunter die Pulverdiffraktometrie (XRD), Durchlichtmikroskopie, Röntgenfluoreszenz (XRF), Optische Emissionsspektroskopie (ICP-OES), Laserablationsmassenspektrometrie (ICP-MS) und Elektronenstrahlmikrosonde (EMPA), sowie Bestimmung der Gold und Platingruppen-Elementkonzentrationen mittels Graphitrohr-AAS nach Voranreicherung mit der Nickelsulfid-Dokimasie. Die untersuchten Tonschiefer verhielten sich seit ihrer Ablagerung als größtenteils geschlossene Systeme. Nur entlang der Kontakte mit unter- und überlagernden grobkörnigeren Metasedimentgesteinen sowie entlang durchkreuzender Störungen, Quarzadern und Gängen konnte lokal nennenswerte Alteration festgestellt werden. Solche Zonen wurden explizit von der Provenienz-Analyse ausgenommen. Systematische Unterschiede in der primären chemischen Zusammensetzung einzelner Tonschiefer-Abfolgen belegen unterschiedliche Sedimentquellen. So wurde in der Barberton Hauptgruppe der Sedimenteintrag der Fig Tree-Gruppe von einer ultramafisch-mafischen Quelle dominiert, während in der Moodies-Gruppe felsische Quellen eine zunehmende Rolle spielten. In der Witwatersrand Hauptgruppe wurde eine Dominanz von Tonalit-Trondhjemit-Granodiorit sowie kalkalkaline Granite im Liefergebiet der West Rand Gruppe festgestellt, während in der Central Rand Gruppe anfänglich mafisch-ultramafische Gesteine im Sedimentliefergebiet vorherrschten, im Lauf der Zeit aber granitische Gesteine mehr und mehr durch Erosion im Hinterland freigelegt worden waren. Die Geochemie der Witwatersrand Tonschiefer unterstützt die Hypothese, dass die Sedimente der West Rand Gruppe an einem passiven Kontinentalrand abgelagert wurden, jene der Central Rand Gruppe in einem Vorlandbecken. Alle untersuchten archaischen Tonschiefer zeigen, verglichen mit dem Durchschnitt der oberen Erdkruste, deutlich erhöhte Gehalte an Gold und Platingruppenelementen, wobei die marinen Tonschiefer aus der Central Rand Gruppe mit durchschnittlich 9,85 ppm Au die höchsten Konzentrationen aufweisen. Die Gehalte an siderophilen Elementen in der palaeoproterozoischen Transvaal Hauptgruppe nähern sich hingegen typischen kontinentalen Krustenwerten an. Der verstärkte Eintrag von Au und PGE in die archaischen marinen tonigen Sedimente wird durch mechanische Koagulation und Aggregation erklärte, wobei feinstkörnige Goldpartikel im suspendierten Sediment weit ins Meer transportiert worden sind. Adsorption von Au aus Meerwasser an syn-sedimentärem Pyrit spielte auch eine Rolle, aber keine ausschlaggebende. Für die Quelle des Goldes und der Platingruppenelemente in den untersuchten Tonschiefern wurde folgendes genetisches Modell entwickelt. (1) Es wird angenommen, dass sich die Kaapvaal-Kruste aus einem Mantelreservoir differenzierte, welches an siderophilen Elementen angereichert war. Diese Anreicherung könnte entweder das Produkt eines nicht vollständig homogenisierten Eintrags kosmischen Materials sein, welches im Hadaikum oder im Paläoarchaikum durch intensives Meteoritenbombardement eingebracht wurde, oder durch den Aufstieg eines Manteldiapirs aus dem Bereich der Kern-Mantel-Grenze. (2) Tiefgründige Verwitterung unter anoxischen Bedingungen ermögliche die Freisetzung großer Mengen von Au, welches in gelöster Form über Oberflächenwässer in den archaischen Ozean transportiert wurde. Hinweise auf solch intensive Verwitterung liefern die geochemischen Daten der hier untersuchten Tonschiefern, insbesondere hohe chemische Alterationsindizes. Fixierung dieses Goldes durch verschiedene Oberflächenprozesse, wie Filterung aus archaischen/paläoproterozoischen Flüssen durch Photosynthese-betreibende Bakterienrasen führte vor allem im Mesoarchaikum in Zeiten der Sedimentation der Central Rand Gruppe zu lokal extremen Goldanreicherungen, die in der Folge durch Erosion und mechanischen Transport großteils weiter umgelagert wurden. Punkt 1 könnte eventuell die räumliche Nähe der weltweit größten bekannten Goldanomalie im Witwatersrand Becken und der größten PGE-Anomalie im Bushveld Komplex erklären. In wie weit die erhöhten Hintergrundkonzentrationen von Gold und Platingruppenelementen im Kaapvaal Kraton einzigartig sind, gilt es in zukünftigen Studien dieser Art auch an marinen Tonschiefern aus dem Archaikum in anderen Kratonen zu testen.
5

Neoproterozoic glaciations of southern Namibia (Kalahari Craton) - Characteristics, geotectonic setting, provenance and geochronological correlation

Zieger-Hofmann, Mandy 08 March 2023 (has links)
There exist various glacial units in the Neoproterozoic strata of southern Namibia (Kalahari Craton). They were recognised and discussed in the scientific literature for at nearly 100 years (e.g. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). The Snowball Earth theory (Hoffman et al., 1998) had an huge impact on Neoproterozoic geosciences and especially outcrops of the Otavi Group in northern Namibia helped to strengthen and support this idea. Nevertheless, the Neoproterozoic glacial horizons in southern Namibia were difficult to interpret and even more difficult to correlate, due to their tectonic overprint and their scarce outcrops. In order to correlate and differentiate the various Neoproterozoic glacial units of southern Namibia (western rim of Kalahari Craton) a multi‐method approach based on isotopic analyses on zircon grains, whole rock geochemistry, grain size measurements combined with extensive field work, mapping and sampling was applied. In total, ten sections were mapped and measured from which 33 samples were chosen for further analyses. Two of these samples represent local basement rocks, 19 the siliciclastic Neoproterozoic sedimentary cover including glacial diamictites, and twelve carbonate samples. 3474 single zircon grains were picked and measured for their dimensions (width and length). Of those, 2404 zircons were analysed with LA‐ICP‐MS techniques for their U‐Pb and Th‐U ratios in order to calculate detrital zircon ages and to obtain information about the source magma. 1535 of those gave concordant ages (90‐110 % of concordance). Further, selected zircon grains (in total 346) with concordant U‐Pb ages were analyses for their εHf(t) values. To gather more information and to be able to provide absolute ages for the Neoproterozoic glacial units the new technique of LAICP‐MS U‐Pb dating on carbonate samples was tested and gave reliable results for ten out of twelve samples (representing seven different sample locations). Field work revealed two sections containing the Sturtian as well as the Marinoan glacial diamictites in relatively undisturbed succession that qualified as reference profiles for Neoproterozoic strata in southern Namibia: the Dreigratberg and the Namuskluft section in the Gariep Belt close to the Orange River. All analysed samples contain a very similar detrital zircon isotopic record and the whole rock geochemical analyses confirm this interpretation. All siliciclastic samples show a general felsic provenance, with zircon ages mainly divided into two age groups (Mesoproterozoic 1.0 – 105 Ga and Palaeoproterozoic 1.7 – 2.1 Ga), reflecting four different growth and recycling events of Mesoproterozoic to Archaean crustal units. The samples have a geochemical signature of continental island arc and the zircon grain dimensions (width vs. length) are also very similar for all samples. Direct age dating of the samples based on detrital zircons was not possible caused by the lack of ages reflecting deposition times. Nevertheless, the most important differences between the various glacial horizons were found in petrographic features (diamictite pebble contents) and the age peak shift of detrital zircon U‐Pb ages (P/M ratio). Based on these and the two reference profiles correlations to other sections were achievable and the differentiation of four distinct Neoproterozoic glacial horizons for southern Namibia was possible. Furthermore, these new results provide new insights into the Neoproterozoic Gariep Belt formation comprising Tonian rifting events, Cryogenian formation of the Arachania Terrane and final Ediacaran collision of the Rio de la Plata and Kalahari cratons. The combination of all results reflects a continuous sedimentary recycling on the western Kalahari Craton. Comparison and statistical similarity tests based on zircon age data bases for possible source areas defined the Namaqua Natal and Gariep belts as the most likely sedimentary source areas, providing the rock material that got recycled for at least 200 Ma from Kaigas glaciation at ca. 750 Ma to Vingerbreek glaciation at ca. 550 Ma. In addition, the lack of exotic detrital zircon ages within the two Snowball Earth events of this study suggests the interpretation of none or only very minor glacial movement confirming the idea of a completely ice‐covered Earth. The assumed Sturtian and Marinoan ages of Numees Fm and Namaskluft Mbr diamictites were confirmed by the results of U‐Pb cap carbonate dating. Based on these, a minimum duration of ca. 8 Ma for the Sturtian and of ca. 14 Ma for the Marinoan glaciation can be assumed.:Abstract Kurzfassung Contents List of Figures List of Tables List of abbreviations Scientific question and thesis structure 1 Introduction 1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations 1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton 1.1.2 Glacial events during the Neoproterozoic era 1.1.2.1 A brief history on the discovery of Snowball Earth events 1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart 1.1.2.3 Hypotheses for cap carbonate formation 1.1.2.4 Survival of life during a Snowball Earth event 1.2 The Kalahari Craton 1.2.1 Evolution of the Kalahari Craton 1.3 Overview over the Geology of Namibia under special consideration of southern Namibia (Kalahari Craton) 2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides 3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari Craton (southern Namibia) 4 Methods 4.1 Field work 4.2 Whole Rock geochemical analyses 4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples 4.4 Zircon grain size analyses 4.5 LA‐ICP‐MS analyses on zircon grains 4.5.1 U‐Pb analyses with LA‐SF‐ICP‐MS 4.5.2 Th‐U ratio determination on zircon grains 4.5.3 Hf‐isotope measurements with LA‐MS‐ICP‐MS 4.6 LA‐ICP‐MS U‐Pb dating on carbonates 4.7 Provenance interpretations and likeness tests based on zircon U‐Pb age data bases 5 Study I: “The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana” 5.1 Introduction and geological setting 5.2 Samples and methods 5.3 Results 5.4 Discussion and interpretation 5.5 Summary 6 Study II: “The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles” 6.1 Introduction 6.2 The samples 6.3 Methods 6.4 Results 6.5 Interpretation and discussion 6.6 Conclusion/Summary 7 Study III: “Correlation of Neoproterozoic diamictites in southern Namibia” 7.1 Introduction 7.2 Sample sites 7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section 2.1.1. Outcrops of the Kaigas Fm diamictites 7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian) 7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds Blaubeker and Tahiti 7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality) 7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabis‐syncline) 7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms 7.2.3 The Sturtian diamictite at the Trekpoort Farm section 7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile) 7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section 7.2.6 Sturtian diamictite and Marinoan‐type cap carbonate at Dreigratberg North section 7.2.7 The Marinoan diamictite at the Witputs Farm section 7.2.8 The post‐Gaskiers Vingerbreek diamictite 7.2.8.1 The Vingerbreek diamictite along the Orange River 7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains) 7.3 Methods 7.4 Data and Results 7.4.1 Results of the U‐Pb detrital zircon data 7.4.2 Results of the U‐Pb carbonate dating 7.4.3 Results of zircon grain width and length measurements 7.4.4 Results of the Th‐U zircon ratios 7.4.5 Results of Lu‐Hf isotopic measurements 7.4.6 Geochemical results of the siliciclastic and basement samples 7.4.7 Geochemical results of the carbonate samples 7.5 Discussion and Conclusion 8 Sediment provenance and Snowball Earth ice dynamics 9 Implications on the evolution of the Gariep Belt 10 Conclusions and outlook 11 References Supplementary Material / Die neoproterozoischen Einheiten des südlichen Namibias (Kalahari Kraton) umfassen verschiedene glaziale Einheiten, die schon seit fast 100 Jahren bekannt sind und wissenschaftlich beschrieben wurden (z.B. Coleman, 1926; Gevers, 1931; Schwellnuss, 1941; Martin, 1965). Die Schneeball Erde Theorie (Hoffman et al., 1998) hatte einen enormen Einfluss auf die geologischen Studien des Neoproterozoikums, wobei besonders Aufschlüsse der Otavi Gruppe Nordnamibias die Theorie stärken und bestätigen. Im Gegensatz dazu sind neoproterozoische glaziale Horizonte Südnamibias aufgrund ihrer tektonischen Überprägung und der wenigen Aufschlüsse schwer zu interpretieren und zu korrelieren. Mit dem Ziel, die neoproterozoischen glazialen Einheiten Südnamibias zu unterscheiden und zu korrelieren, wurde ein Multimethodenansatz basierend auf Isotopenanalysen an Zirkonmineralen, Gesamtgesteinsgeochemie, Mineralkorngrößenmessungen und intensiver Feldarbeit angewandt. Insgesamt wurden zehn Profile kartiert und vermessen, von denen 33 Proben zur weiteren Analyse ausgewählt wurden. Zwei dieser Proben stammen vom lokalen Grundgebirge, 19 aus den sedimentären Einheiten darüber (inklusive der glazialen Ablagerungen) und zwölf repräsentieren Karbonatgesteinsproben. 3474 Einzelzirkone wurden hinsichtlich ihrer Breite und Länge vermessen, wovon 2404 Minerale mittels LA‐ICP‐MS nach ihren U‐Pb und Th‐U‐Gehalten analysiert wurden. 1535 dieser Minerale ergaben konkordante Alter (90 – 110% Konkordanz). Darüber hinaus wurden von 346 ausgewählten konkordanten Zirkonen die εHf(t) Werte bestimmt. Um das Datenset zu vervollständigen wurden LA‐ICP‐MS U‐Pb Analysen an Karbonatgesteinen an zehn von zwölf Proben erfolgreich getestet. Im Zuge der Feldarbeiten kristallisierten sich zwei Profile nahe des Oranje heraus, welche die Sturtian und die Marinoan Vereisung in nahezu ungestörter Lagerung enthalten und sich deshalb als Referenzprofile qualifizieren. Alle analysierten Proben zeichnen sich durch sehr ähnliche Zirkonisotopenwerte aus, was durch die Gesamtgesteinsgeochemieanalysen weiterhin bestätigt wird. Alle siliziklastischen Proben zeigen eine generelle felsische Provenienz mit Zirkonaltern welche sich hauptsächlich in zwei Altersgruppen unterteilen lassen (mesoproterozoisch 1.0 – 1.5 Mrd Jahre, paläoproterozoisch 1.7 – 2.1 Mrd Jahre). Diese reflektieren vier verschiedene krustale Entwicklungsstadien vom Mesoproterozoikum bis Archaikum. Die geochemische Signatur aller Proben deutet auf einen kontinentalen Inselbogen hin und auch die Zirkonmineralgrößen sind für alle Proben ähnlich. Eine direkte Altersdatierung auf Grundlage der detritischen Zirkone war aufgrund fehlender junger Alter nicht möglich. Dennoch ist eine Unterscheidung der glazialen Schichten Südnamibias basierend auf den petrographischen Eigenschaften und dem sich verschiebenden Alterstrend der detritischen Zirkone möglich (P/M Verhältnis). In Kombination mit den zwei Referenzprofilen ist eine umfassende Korrelation aller untersuchten Profile möglich und die Unterscheidung von vier Neoproterozoischen glazialen Schichten in Namibia gelungen. Die Ergebnisse geben weitere Einblicke in die neoproterozoische Entwicklung des Gariep Gürtels, welcher durch Riftvorgänge im Tonium, die Bildung des Arachania Terranes während des Cryogeniums und die ediakarische finale Kollision zwischen den Rio de la Plata und Kalahari Kratonen geprägt ist. Die Kombination aller Ergebnisse zeigt ein kontinuierliches Sedimentrecycling auf dem westlichen Kalahari Kraton. Vergleiche und statistische Ähnlichkeitsanalysen basierend auf U‐Pb Zirkonalterdatenbanken ergaben, dass der Namaqua Natal und der Gariep Gürtel die wahrscheinlichsten Liefergebiete sind. Das Recycling fand für mindestens 200 Millionen Jahre zwischen der Kaigas Vereisung (etwa vor 750 Millionen Jahren) und der Vingerbreek Vereisung (etwa vor 550 Millionen Jahren) statt. Darüber hinaus zeigt das Fehlen fremder Zirkonalter für die Schneeball Erde Proben, dass sich die Eispanzer kaum oder nur sehr wenig bewegt haben können, was die Theorie einer komplett zugefrorenen Erde unterstützt. Die Ergebnisse der U‐Pb Karbonatgesteinsdatierungen bestätigen des angenommene Sturtian und Marinoan Alter der Numees Fm und des Namaskluft Mbr. Basierend auf diesen Analysen kann eine Mindestlänge von etwa 8 Millionen Jahren für das Sturtian und etwa 14 Millionen Jahren für das Marinoan Schneeball Erde Ereignis angenommen werden.:Abstract Kurzfassung Contents List of Figures List of Tables List of abbreviations Scientific question and thesis structure 1 Introduction 1.1 The Neoproterozoic era: Supercontinent dispersal and global glaciations 1.1.1 Rodinia supercontinent: Formation, dispersal, and location of Kalahari Craton 1.1.2 Glacial events during the Neoproterozoic era 1.1.2.1 A brief history on the discovery of Snowball Earth events 1.1.2.2 Formation and termination of a Snowball Earth event: The Snowball Earth flow chart 1.1.2.3 Hypotheses for cap carbonate formation 1.1.2.4 Survival of life during a Snowball Earth event 1.2 The Kalahari Craton 1.2.1 Evolution of the Kalahari Craton 1.3 Overview over the Geology of Namibia under special consideration of southern Namibia (Kalahari Craton) 2 Characteristics of southern Namibian Neoproterozoic glacial samples and sides 3 The problematic correlations of Neoproterozoic glacial deposits of the Kalahari Craton (southern Namibia) 4 Methods 4.1 Field work 4.2 Whole Rock geochemical analyses 4.3 Heavy mineral separation and SEM analyses on zircon grains of siliciclastic samples 4.4 Zircon grain size analyses 4.5 LA‐ICP‐MS analyses on zircon grains 4.5.1 U‐Pb analyses with LA‐SF‐ICP‐MS 4.5.2 Th‐U ratio determination on zircon grains 4.5.3 Hf‐isotope measurements with LA‐MS‐ICP‐MS 4.6 LA‐ICP‐MS U‐Pb dating on carbonates 4.7 Provenance interpretations and likeness tests based on zircon U‐Pb age data bases 5 Study I: “The Namuskluft and Dreigratberg sections in southern Namibia (Kalahari Craton, Gariep Belt): a geological history of Neoproterozoic rifting and recycling of cratonic crust during the dispersal of Rodinia until the amalgamation of Gondwana” 5.1 Introduction and geological setting 5.2 Samples and methods 5.3 Results 5.4 Discussion and interpretation 5.5 Summary 6 Study II: “The four Neoproterozoic glaciations of southern Namibia and their detrital zircon record: The fingerprints of four crustal growth events during two supercontinent cycles” 6.1 Introduction 6.2 The samples 6.3 Methods 6.4 Results 6.5 Interpretation and discussion 6.6 Conclusion/Summary 7 Study III: “Correlation of Neoproterozoic diamictites in southern Namibia” 7.1 Introduction 7.2 Sample sites 7.2.1. The Kaigas and Sturtian Numees diamictites at the Orange River section 2.1.1. Outcrops of the Kaigas Fm diamictites 7.2.1.2 Outcrop of the Numees Fm diamictites (Sturtian) 7.2.2 The Sturtian diamcitite of the Blaubeker Fm (Witvlei Grp) at the farmgrounds Blaubeker and Tahiti 7.2.2.1 The Blaubeker diamictite at Blaubeker Farm (type locality) 7.2.2.2 The Blaubeker diamictite at Tahiti Farm (Gobabis‐syncline) 7.2.2.3 Correlation of Blaubeker diamictite at Blaubeker and Tahiti farms 7.2.3 The Sturtian diamictite at the Trekpoort Farm section 7.2.4 The Sturtian and Marinoan diamictites at Namuskluft section (reference profile) 7.2.5 The Sturtian and Marinoan diamictites at Dreigratberg section 7.2.6 Sturtian diamictite and Marinoan‐type cap carbonate at Dreigratberg North section 7.2.7 The Marinoan diamictite at the Witputs Farm section 7.2.8 The post‐Gaskiers Vingerbreek diamictite 7.2.8.1 The Vingerbreek diamictite along the Orange River 7.2.8.2 The Vingerbreek diamictite at Tierkloof Farm (Klein Karas Mountains) 7.3 Methods 7.4 Data and Results 7.4.1 Results of the U‐Pb detrital zircon data 7.4.2 Results of the U‐Pb carbonate dating 7.4.3 Results of zircon grain width and length measurements 7.4.4 Results of the Th‐U zircon ratios 7.4.5 Results of Lu‐Hf isotopic measurements 7.4.6 Geochemical results of the siliciclastic and basement samples 7.4.7 Geochemical results of the carbonate samples 7.5 Discussion and Conclusion 8 Sediment provenance and Snowball Earth ice dynamics 9 Implications on the evolution of the Gariep Belt 10 Conclusions and outlook 11 References Supplementary Material
6

Geologic evolution of the Adrar Souttouf Massif (Moroccan Sahara) and its significance for continental-scaled plate reconstructions since the Mid Neoproterozoic

Gärtner, Andreas 20 March 2018 (has links) (PDF)
Located in the south of the Moroccan Sahara, the Adrar Souttouf Massif is the northern continuation of the Mauritanides at the western margin of the West African Craton. The massif itself exhibits a complex polyphase geologic history and contains four geologically different, SSW-NNE trending main units named from west to east: Oued Togba, Sebkha Gezmayet, Dayet Lawda, Sebkha Matallah. They are thrusted over each other in thin-skinned nappes with local windows of the discordantly overlain Archaean Reguibat basement. The eastern margin of the massif is bordered by the Tiris and Tasiast-Tijirit areas of the Reguibat Shield as well as its (par-) autochthonous Palaeozoic cover sequence, termed Dhloat Ensour unit. More than 5.500 U-Th-Pb age determinations and over 1.000 Hf isotopic measurements on single zircon grains from igneous, metamorphic, and sedimentary rocks of all the massifs units and its vicinity have yet been obtained. Most of the zircons were studied with respect to their morphological features. This method improves the accuracy of provenance studies by detecting varying zircon morphologies in space and time. These data are accompanied by U-Th-Pb age determinations on apatite as well as rutile. Together, they allow proposing a model of the geologic evolution of this poorly mapped area for the last 635 Ma. A combination of the obtained data with extensive zircon age databases of the surrounding cratons and terranes facilitates continental-scaled palaeogeographic reconstructions. Regarding the geologic evolution of the Adrar Souttouf Massif, the assembly of the first units began prior to 635 Ma. Although containing all the major zircon age and Hf-isotope populations of the West African Craton as well as some Mesoproterozoic grains, the Sebkha Gezmayet unit lies to the west of the Dayet Lawda unit of oceanic island arc composition. Hence, the Sebkha Gezmayet unit must have been rifted away from the craton prior to the formation of the oceanic unit within the West African Neoproterozoic Ocean at about 635 Ma. Recently published Hf and zircon age data of this unit suggest that the island arc was derived from a juvenile mantle source. Subsequently, the accretion of precursors of the Oued Togba and Sebkha Gezmayet units as well as a partial obduction of the oceanic Dayet Lawda unit and the Neoproterozoic sediments of a foreland basin (Sebkha Matallah unit) onto the Reguibat Shield took place. Peak metamorphism in the obducted oceanic rocks was reached at about 605 Ma. Magmatism in the western units between 610 and 570 Ma suggests on-going tectonic activity. The Early and Middle Cambrian is characterised by the erosion of the Ediacaran orogen and deposition of thick sedimentary sequences at the Sebkha Matallah unit, which acted as foreland basin. These sediments show a mostly West African zircon record with only some Mesoproterozoic grains provided by the westernmost parts of the massif. Initial rifting of the Oued Togba and Sebkha Gezmayet units from the remaining areas presumably occurred during the Late Cambrian. Coeval granitoid intrusions occurred on both sides of the rift. The two rifted units were likely involved to the polyphased Appalachian orogenies, which is emphasised by Devonian magmatism. Thus, and with respect to the isotopic data, the Oued Togba unit is interpreted to be of Avalonia affinity, while the Sebkha Gezmayet unit can likely be linked to Meguma. The units which remained at the West African Craton underwent intense sediment recycling during the entire Ordovician to Devonian times. Final accretion of all units and formation of the current massif was achieved during the Variscan-Alleghanian orogeny. This was accompanied by magmatism in the Sebkha Gezmayet unit and intense metamorphism of the Reguibat basement, whose zircons often show lower discordia intercepts of Carboniferous or Permian age. The post-Variscan period is characterised by erosion of the orogen and subjacent alternating cycles of sedimentation and deflation. The Adrar Souttouf Massifs importance for palaeogeographic reconstructions is given by the striking differences in the zircon age and Hf-isotope record of its westernmost Oued Togba unit and the remaining area. The results obtained from the Oued Togba unit resemble the published data of the Avalonia type terranes including prominent Mesoproterozoic, Ediacaran-Early Cambrian, as well as Early Devonian age populations. Many Mesoproterozoic zircons, which are exotic for the West African Craton prior to 635 Ma, form a ca. 1.20 to 1.25 Ga age peak that is an excellent tracer for detrital provenance studies and source craton identification of the sedimentary rocks. This is also valid for some sedimentary samples that do not show ages younger than 700 Ma, but large quantities of Mesoproterozoic zircon. These rocks can be correlated to similar sediments in Mauritania and W-Avalonia and are thought to be of pre-pan-African", i.e. pre-Ediacaran or even pre-Cryogenian age. They may give direct insights to the source area in Early to Mid Neoproterozoic times. Accordingly, comparison with published data of Amazonia and Baltica, allows setting up new hypotheses for the pre-Ediacaran history of the Avalonian type terranes. Lacking of magmatism in Amazonia between ca. 1200 and ca. 1300 Ma favours Baltica as source craton for the Avalonian terranes and requires a new point of view for the Neoproterozoic palaeogeography.
7

Geologic evolution of the Adrar Souttouf Massif (Moroccan Sahara) and its significance for continental-scaled plate reconstructions since the Mid Neoproterozoic

Gärtner, Andreas 21 December 2017 (has links)
Located in the south of the Moroccan Sahara, the Adrar Souttouf Massif is the northern continuation of the Mauritanides at the western margin of the West African Craton. The massif itself exhibits a complex polyphase geologic history and contains four geologically different, SSW-NNE trending main units named from west to east: Oued Togba, Sebkha Gezmayet, Dayet Lawda, Sebkha Matallah. They are thrusted over each other in thin-skinned nappes with local windows of the discordantly overlain Archaean Reguibat basement. The eastern margin of the massif is bordered by the Tiris and Tasiast-Tijirit areas of the Reguibat Shield as well as its (par-) autochthonous Palaeozoic cover sequence, termed Dhloat Ensour unit. More than 5.500 U-Th-Pb age determinations and over 1.000 Hf isotopic measurements on single zircon grains from igneous, metamorphic, and sedimentary rocks of all the massifs units and its vicinity have yet been obtained. Most of the zircons were studied with respect to their morphological features. This method improves the accuracy of provenance studies by detecting varying zircon morphologies in space and time. These data are accompanied by U-Th-Pb age determinations on apatite as well as rutile. Together, they allow proposing a model of the geologic evolution of this poorly mapped area for the last 635 Ma. A combination of the obtained data with extensive zircon age databases of the surrounding cratons and terranes facilitates continental-scaled palaeogeographic reconstructions. Regarding the geologic evolution of the Adrar Souttouf Massif, the assembly of the first units began prior to 635 Ma. Although containing all the major zircon age and Hf-isotope populations of the West African Craton as well as some Mesoproterozoic grains, the Sebkha Gezmayet unit lies to the west of the Dayet Lawda unit of oceanic island arc composition. Hence, the Sebkha Gezmayet unit must have been rifted away from the craton prior to the formation of the oceanic unit within the West African Neoproterozoic Ocean at about 635 Ma. Recently published Hf and zircon age data of this unit suggest that the island arc was derived from a juvenile mantle source. Subsequently, the accretion of precursors of the Oued Togba and Sebkha Gezmayet units as well as a partial obduction of the oceanic Dayet Lawda unit and the Neoproterozoic sediments of a foreland basin (Sebkha Matallah unit) onto the Reguibat Shield took place. Peak metamorphism in the obducted oceanic rocks was reached at about 605 Ma. Magmatism in the western units between 610 and 570 Ma suggests on-going tectonic activity. The Early and Middle Cambrian is characterised by the erosion of the Ediacaran orogen and deposition of thick sedimentary sequences at the Sebkha Matallah unit, which acted as foreland basin. These sediments show a mostly West African zircon record with only some Mesoproterozoic grains provided by the westernmost parts of the massif. Initial rifting of the Oued Togba and Sebkha Gezmayet units from the remaining areas presumably occurred during the Late Cambrian. Coeval granitoid intrusions occurred on both sides of the rift. The two rifted units were likely involved to the polyphased Appalachian orogenies, which is emphasised by Devonian magmatism. Thus, and with respect to the isotopic data, the Oued Togba unit is interpreted to be of Avalonia affinity, while the Sebkha Gezmayet unit can likely be linked to Meguma. The units which remained at the West African Craton underwent intense sediment recycling during the entire Ordovician to Devonian times. Final accretion of all units and formation of the current massif was achieved during the Variscan-Alleghanian orogeny. This was accompanied by magmatism in the Sebkha Gezmayet unit and intense metamorphism of the Reguibat basement, whose zircons often show lower discordia intercepts of Carboniferous or Permian age. The post-Variscan period is characterised by erosion of the orogen and subjacent alternating cycles of sedimentation and deflation. The Adrar Souttouf Massifs importance for palaeogeographic reconstructions is given by the striking differences in the zircon age and Hf-isotope record of its westernmost Oued Togba unit and the remaining area. The results obtained from the Oued Togba unit resemble the published data of the Avalonia type terranes including prominent Mesoproterozoic, Ediacaran-Early Cambrian, as well as Early Devonian age populations. Many Mesoproterozoic zircons, which are exotic for the West African Craton prior to 635 Ma, form a ca. 1.20 to 1.25 Ga age peak that is an excellent tracer for detrital provenance studies and source craton identification of the sedimentary rocks. This is also valid for some sedimentary samples that do not show ages younger than 700 Ma, but large quantities of Mesoproterozoic zircon. These rocks can be correlated to similar sediments in Mauritania and W-Avalonia and are thought to be of pre-pan-African", i.e. pre-Ediacaran or even pre-Cryogenian age. They may give direct insights to the source area in Early to Mid Neoproterozoic times. Accordingly, comparison with published data of Amazonia and Baltica, allows setting up new hypotheses for the pre-Ediacaran history of the Avalonian type terranes. Lacking of magmatism in Amazonia between ca. 1200 and ca. 1300 Ma favours Baltica as source craton for the Avalonian terranes and requires a new point of view for the Neoproterozoic palaeogeography.
8

Minerogeny of the Pan-African Volta Basin of Ghana

Boamah, Kwame 10 April 2017 (has links) (PDF)
Within the framework of this research, the complex geological history of the Pan African-Volta basin has been systematically reconstructed. Based on a broad review of literature and new data, 5 stages of geological-tectonic development have been identified. For the first time a systematic review of the mineral potential of the Pan-African Volta Basin was executed. Known and potentially existing mineralization have been related to the geotectonic history and metallogenetic conclusions have been drawn. Based on the findings of this research, the folded thrust belt located at the eastern rim of the Volta basin has been identified as the most prospective area for the ultramafic rocks with chromite, nickel mineralization and PGEs, hydrothermal gold and banded iron formation (BIF) but this will require further work.
9

Minerogeny of the Pan-African Volta Basin of Ghana

Boamah, Kwame 04 March 2017 (has links)
Within the framework of this research, the complex geological history of the Pan African-Volta basin has been systematically reconstructed. Based on a broad review of literature and new data, 5 stages of geological-tectonic development have been identified. For the first time a systematic review of the mineral potential of the Pan-African Volta Basin was executed. Known and potentially existing mineralization have been related to the geotectonic history and metallogenetic conclusions have been drawn. Based on the findings of this research, the folded thrust belt located at the eastern rim of the Volta basin has been identified as the most prospective area for the ultramafic rocks with chromite, nickel mineralization and PGEs, hydrothermal gold and banded iron formation (BIF) but this will require further work.:Table of contents Table of contents iii List of tables v List of figures 1 Introduction 5 Summary of work done 6 Acknowledgements 6 1 In the Geology and regional geotectonic development of the West African Shield 7 1.1 Introduction 7 1.2 The basement of the Proterozoic sedimentary platform cover 9 1.3 Connection of West African Shield to Brazil 10 1.4 The Neoproterozoic sedimentary sequence and the extent of the Volta Basin 13 1.4.1 Introduction 13 1.4.2 The Neoproterozoic Sedimentary Sequence 15 1.5 The Pan-African Mobile Belt 23 1.5.1 The Buem Fold and thrust belt 23 1.5.2 New defined units 30 1.6 Interpretation of the deep structure of the Volta Basin 35 1.7 Metallic Minerals 37 1.7.1 Introduction 37 1.7.2 Iron (Fe) 39 1.7.3 Aluminium (Al) 46 1.7.4 Manganese (Mn) 50 1.7.5 Lead (Pb) 52 1.7.6 Copper (Cu) 55 1.7.7 Mineralisation related to ultramafic rocks 57 1.7.8 Gold (Au) 69 1.7.9 Tantalum (Ta) 72 1.7.10 Zirconium (Zr) 73 1.7.11 Heavy minerals in sands of Paleochannels 76 1.8 Non-metallic minerals 83 1.8.1 Introduction 83 1.8.2 Limestone (CaCO3) 84 1.8.3 Magnesite (MgCO3) 91 1.8.4 Barite (BaSO4) 93 1.8.5 Diamonds 97 1.8.6 Bitumen 100 1.9 Mineral Prediction with advangeo® Prediction Software 102 2 Minerogeny 109 2.1 Mineralisation controls and indicators 109 2.1.1 Geochemical Properties of selected stratigraphic units 109 2.1.2 Intrusive rocks 114 2.1.3 Volcanic rocks 118 2.1.4 Fault structural controls 119 2.1.5 Reactive Rocks 121 2.1.6 Other sedimentary controls: placers and paleoplacers 122 2.1.7 Laterites 122 2.1.8 Control of diamond occurrences 132 2.2 Key stages of metallogenic development 132 3 Discussion and recommendations 136 3.1 Recommendations 138 4 List of References 139 5 Appendices 144 5.1.1 Sample G113RK1 144 5.1.2 Sample G109RK1 145 5.1.3 Sample G116RK1 147 5.1.4 Sample G121RK1 149 5.1.5 Sample G121RK2 151 5.1.6 Sample G121RK3 152 5.1.7 Sample G131RK1 154 5.1.8 Sample G144RK2 155 5.1.9 Sample G145RK1 156 5.1.10 Sample G147RK1 157 5.2 Thin Sections 159 5.3 Deep drilling Data 174 5.4 Geophysical Datasets 176 5.5 Geochemical properties of volcanic rocks 181 5.6 Regional Geochemical Datasets (MSSP) 186 5.6.1 Methodology of data processing 188 5.7 Geochemical analysis – Electronic Dump 190 5.8 Geochemical properties of selected geo-tectonic units 190 5.8.1 Epicratonic basin 190 5.8.2 Foreland Basin 195 5.8.3 Thrusted continental margin 202
10

Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations

Dittrich, Thomas 14 September 2017 (has links) (PDF)
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail. Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn). In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia. In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites. Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system. This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe. All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe. Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide. Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs. The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems. LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation. Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series. The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results. Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems. This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide. / Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden. Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt. Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden. Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden. Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen. Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin). Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren. Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet. Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen. LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein. Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation. Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten. Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben. Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können. Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen. Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen.

Page generated in 0.0504 seconds