• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lönsammare framtagning av kulventiler : med avseende på tillverkningsprocess och materialbesparing / Savings in production of ball valves : with respect to the manufacturing process and material saving

Myrén Zreloff, Mia January 2012 (has links)
Abstract This is a thesis done in cooperation with the firm Somas and University of Karlstad. The project is an independent final examination part of the program in Innovation and Design Engineering comprising 22.5 points, and performed by Mia Myrén Zreloff during spring term 2012. In parallel and collaboration, Fredrik Kjellin performs a similar job for the same company and with the same extent, but for the Program in Mechanical Engineering. The client and supervisor at the company have been Magnus Jansson and Anders Josefsson. At Karlstad University has technical supervisor been Hans Johansson, and in the design- and development process it was Monica Jakobsson. Examiner has been Fredrik Thuvander, professor in the Faculty of Technology and Science at Karlstad University. The mission has been to make a basis work for the company's own development and make a computational model to calculate, visualize and implement materials and other solutions in the manufacture of the company's ball valves. The project has undergone three major phases that included thorough study of the company, production, the problem and product. Since the product development phase in which the calculations, idea generation, analysis and concept selection has been completed. Final solution was adapted to the user and the company for final presentation and transfer. The result was the calculation files for different kinds of manufacturing treatments that show stresses and deformations, also suggest improvements in production and development of the product: Material savingsThinner, minimum valve house wall The wall thickness can be reduced down to 1.25 mm without tension or deformation becomes too high. “Luggs” Other improvements:No precast hole for the steering spindle Review of additional casting material, "green body" New way of clamping the valve of the machining center The material saving solutions developed have been demonstrated with CAD-models, FEM-analysis and calculations. If all proposed and developed ideas are implemented, materials purchasing costs can be reduced by 56 %. / Sammanfattning Detta är ett examensarbete som utförts i samarbete med företaget Somas och Karlstads universitet. Arbetet är ett självständigt slutexaminationsmoment inom Innovations- och designingenjörsprogrammet, omfattande 22,5 hp, och utfört av Mia Myrén Zreloff vårterminen 2012. Parallellt och i samarbete har Fredrik Kjellin utfört ett liknande arbete för samma företag och i samma omfattning, men för Maskiningenjörprogrammet. Uppdragsgivare och handledare på företaget har varit Magnus Jansson och Anders Josefsson. På Karlstads universitet har teknisk handledare varit Hans Johansson och inom design och produktutvecklingsprocessen Monica Jakobsson. Examinator har varit Fredrik Thuvander, professor inom Fakulteten för teknik- och naturvetenskap vid Karlstads universitet. Uppdraget har varit att göra en grund för företagets egna utvecklingsarbete och göra en beräkningsmodell för att kunna beräkna på, visualisera och genomföra material- och andra besparingar i tillverkningen av företagets kulventiler. Projektet har genomgått tre olika större faser. Dessa har innefattat grundlig förstudie inom företaget, tillverkning, om problemet och produkten. Sedan produktutvecklingsfasen där beräkningar, idégenerering, analyser och konceptval har genomförts. Avslutande anpassades lösningen till användaren och företaget för slutlig presentation och överlämning. Resultatet blev beräkningsfiler för olika sorters bearbetningar som visar på spänningar och deformationer under tillverkningen, även förslag på förbättringar i produktion och framtagning av produkten: Materialbesparingar:Tunnare, minsta tillåtna ventilhusvägg Väggtjockleken kan minskas ner till 1,25 mm utan att spänningar eller deformationer blir för höga. ”Luggs” Andra förbättringar:EJ förgjutet spindelingångshål Granskning av extra gjutmaterial, ”grönkropp” Ny inspänning i fleroperationsmaskin De materialbesparingslösningar som tagits fram har visats med CAD-modeller, FEM-analyser och beräkningsunderlag. Om alla föreslagna och framtagna idéer genomförs kan materialinköpskostnaden minskas med 56 %.
2

Utveckling av säte till kulventil SKV

Jansson, Daniel, Andersson, Lennart January 2007 (has links)
<p>This report contains a degree project made by the mechanical engineering students Lennart Andersson and Daniel Jansson. The project has performed in assignment by SOMAS Valves AB in Säffle. SOMAS are leading in development on control and on/off valves. To maintain this position they always want to improve their products. One way in this development is valves that are more tightened.</p><p>The purpose with our project was to investigate another seat design on a HiCo (High Cobalt Alloy) seat to a SKV 150 PN 25 valve and compare this to an original HiCo seat.</p><p>By modifying the seat on a ball valve we want to achieve a valve that leaks lesser then a valve whit original seat. At the same time the maneuver torque should be retained or better and the wear should not be worse.</p><p>The project begins with a theoretic investigation of valve forces, maneuver torque and seat design. A manufacturing drawing was made in Pro ENGINEER and handed over to SOMAS AB for manufacturing. Four seats are made in the new design and will be compared with four original seats about maneuver torque, tightened and wear. The idea to make a trace in the middle of the seat was that it would tighten earlier.</p><p>Water under pressure is pressed against the valve to test its resistance of leaking, the leaking is measured by a measure glass. The modified seats leaks more then the original seats, even though, according to the theory they should have a higher seat force. Even the maneuver torque is higher on the modified seats, but this increase is not a problem. All seats was tested to watch their resistant to wear, to test this, a valve mounted with seats is opened and closed 600 times (about 3hours). Because of the short wear time it’s hard to see and validated wear, but on the after coming pressure test the valve is more tightened.</p><p>A reason to leaking is the tolerances between the seats and the ball. The reason why the modified valve seat leaks more is probably that the lathe area functions as a channel for the medium.</p><p>The medium which passes the first tightened area can easier find a new way to pass the second tightened area.</p><p>The conclusion is that the new seat design is nothing to go further with, but there are proposals for a new seat design.</p>
3

Utveckling av säte till kulventil SKV

Jansson, Daniel, Andersson, Lennart January 2007 (has links)
This report contains a degree project made by the mechanical engineering students Lennart Andersson and Daniel Jansson. The project has performed in assignment by SOMAS Valves AB in Säffle. SOMAS are leading in development on control and on/off valves. To maintain this position they always want to improve their products. One way in this development is valves that are more tightened. The purpose with our project was to investigate another seat design on a HiCo (High Cobalt Alloy) seat to a SKV 150 PN 25 valve and compare this to an original HiCo seat. By modifying the seat on a ball valve we want to achieve a valve that leaks lesser then a valve whit original seat. At the same time the maneuver torque should be retained or better and the wear should not be worse. The project begins with a theoretic investigation of valve forces, maneuver torque and seat design. A manufacturing drawing was made in Pro ENGINEER and handed over to SOMAS AB for manufacturing. Four seats are made in the new design and will be compared with four original seats about maneuver torque, tightened and wear. The idea to make a trace in the middle of the seat was that it would tighten earlier. Water under pressure is pressed against the valve to test its resistance of leaking, the leaking is measured by a measure glass. The modified seats leaks more then the original seats, even though, according to the theory they should have a higher seat force. Even the maneuver torque is higher on the modified seats, but this increase is not a problem. All seats was tested to watch their resistant to wear, to test this, a valve mounted with seats is opened and closed 600 times (about 3hours). Because of the short wear time it’s hard to see and validated wear, but on the after coming pressure test the valve is more tightened. A reason to leaking is the tolerances between the seats and the ball. The reason why the modified valve seat leaks more is probably that the lathe area functions as a channel for the medium. The medium which passes the first tightened area can easier find a new way to pass the second tightened area. The conclusion is that the new seat design is nothing to go further with, but there are proposals for a new seat design.
4

Utveckling av kulventil DN500 / Development of ball valve DN500

Olsson, David, Larsson, Michael January 2007 (has links)
<p>SOMAS är ett tillverkningsföretag i ventilbranschen som tillverkar olika sorters ventiler och ställdon.</p><p>SOMAS vill konstruera en kulventil med en genomloppsdiameter i den standardiserade dimensionen DN500 för att kunna möta kundernas önskemål. Som konstruktionen ser ut idag kommer den bli för stora moment för ställdonen att manövrera kulan om man skalar upp en DN400 kulventil till DN500, varför ny konstruktion behövs.</p><p>Syftet med projektet är att komma med idéer till konstruktionslösningar samt att utreda vilken av dessa som i slutänden är den mest lämpliga.</p><p>Målet är sedan att ta fram ett konstruktionsförslag på det mest lämpliga förslaget.</p><p>3D CAD-modeller gjordes av SOMAS befintliga DN400 kulventil, i Pro/engineer var det sedan lätt att se vilka skillnader på kulans massa de olika modifieringarna gjorde.</p><p>Vi modellerade den befintliga DN400 kulan, kula med kapad botten och tärningsform. När massan på de olika alternativen och gjutgodsets kilopris var känd kunde vi sedan räkna fram prisskillnader i procent mellan de olika alternativen.</p><p>Vi tittade på olika typer av lagringar och delningar av ventilhusen, både med lösa och fasta spindlar.</p><p>Tittade på alternativa tillverkningsmetoder och alternativa material för kulan. Priset på de alternativa materialen jämfördes med standard gjutgods (SS 2343).</p><p>För att få fram storleken på ett säte till en DN500 kulventil gjordes beräkningar på sätestrycket. Ett diagram skapades i Excel över alla SOMAS kulventiler för att få fram ett erforderligt stängningsmoment för en flytande DN500 kula (flytande innebär att kulan inte har någon lagring i botten, se figur 2 sid. 15).</p><p>Kom fram till att vi var tvungna att lagra kulan för att minska stängningsmomentet, beräknade då lagringstryck samt skjuvspänning i axeltapparna för att få fram erforderlig längd samt diameter på dessa.</p><p>Räknade på hur stor momentminskningen blev om man lagrade kulan istället för att ha den flytande.</p><p>Den mest lämpliga konstruktionen visade sig vara en tärningsformad kula lagrad med ingjutna fasta tappar och urfrästa lagerhus i det diagonalt delade ventilhuset.</p> / <p>SOMAS are a producing company within the valve area and are producing different kinds of valves and actuators.</p><p>SOMAS wants to design a ball valve with the standardized flow diameter DN500 to meet the market demands. Today’s construction if it's up scaled from a DN400 ball valve to DN500 gives to much torque for the actuator to handle the turning of the ball, therefore a new design is needed.</p><p>Our task is to come up with new design ideas. In addition, find out which one of those are the most suitable.</p><p>The goal is to come up with at construction suggestion of the most suitable construction.</p><p>3D CAD-models of SOMAS DN400 ball valve were made at which some modifications were made. It was easy to see the variation in the ball mass when a modification was made in Pro/engineer. We made models of the existing DN400 ball, ball with the bottom cut of and dice shaped ball. When we knew the mass of the alternative shapes and the price of the castings, we calculated the price differences in percent between the different alternatives.</p><p>We looked at different types of bearings and separations of the valve house, both with loose and fastened axels.</p><p>Looked at alternative manufacturing methods and alternative materials for the ball. The price on the alternative materials where compared with standard castings (SS 2343).</p><p>To come up with a size for the seat to a DN500 ball valve, calculations of the seat pressure was made. A diagram over all SOMAS ball valves was made in Excel to calculate necessary closing torque for a floating DN500 ball (floating means that the ball does not have a bearing in the bottom look, at figur 2 page 15).</p><p>We conclude that we had to mount the ball in bearings to minimize the torque. Calculated bearing pressure and shear in the shafts to come up with required length and diameter of those.</p><p>Computed on how much the torque reduction was if the ball was mounted in bearings versus floating.</p><p>We found that a dice shaped ball with bearings, cast axels, milled bearing houses and diagonally split valve house is the most suitable.</p>
5

Utveckling av kulventil DN500 / Development of ball valve DN500

Olsson, David, Larsson, Michael January 2007 (has links)
SOMAS är ett tillverkningsföretag i ventilbranschen som tillverkar olika sorters ventiler och ställdon. SOMAS vill konstruera en kulventil med en genomloppsdiameter i den standardiserade dimensionen DN500 för att kunna möta kundernas önskemål. Som konstruktionen ser ut idag kommer den bli för stora moment för ställdonen att manövrera kulan om man skalar upp en DN400 kulventil till DN500, varför ny konstruktion behövs. Syftet med projektet är att komma med idéer till konstruktionslösningar samt att utreda vilken av dessa som i slutänden är den mest lämpliga. Målet är sedan att ta fram ett konstruktionsförslag på det mest lämpliga förslaget. 3D CAD-modeller gjordes av SOMAS befintliga DN400 kulventil, i Pro/engineer var det sedan lätt att se vilka skillnader på kulans massa de olika modifieringarna gjorde. Vi modellerade den befintliga DN400 kulan, kula med kapad botten och tärningsform. När massan på de olika alternativen och gjutgodsets kilopris var känd kunde vi sedan räkna fram prisskillnader i procent mellan de olika alternativen. Vi tittade på olika typer av lagringar och delningar av ventilhusen, både med lösa och fasta spindlar. Tittade på alternativa tillverkningsmetoder och alternativa material för kulan. Priset på de alternativa materialen jämfördes med standard gjutgods (SS 2343). För att få fram storleken på ett säte till en DN500 kulventil gjordes beräkningar på sätestrycket. Ett diagram skapades i Excel över alla SOMAS kulventiler för att få fram ett erforderligt stängningsmoment för en flytande DN500 kula (flytande innebär att kulan inte har någon lagring i botten, se figur 2 sid. 15). Kom fram till att vi var tvungna att lagra kulan för att minska stängningsmomentet, beräknade då lagringstryck samt skjuvspänning i axeltapparna för att få fram erforderlig längd samt diameter på dessa. Räknade på hur stor momentminskningen blev om man lagrade kulan istället för att ha den flytande. Den mest lämpliga konstruktionen visade sig vara en tärningsformad kula lagrad med ingjutna fasta tappar och urfrästa lagerhus i det diagonalt delade ventilhuset. / SOMAS are a producing company within the valve area and are producing different kinds of valves and actuators. SOMAS wants to design a ball valve with the standardized flow diameter DN500 to meet the market demands. Today’s construction if it's up scaled from a DN400 ball valve to DN500 gives to much torque for the actuator to handle the turning of the ball, therefore a new design is needed. Our task is to come up with new design ideas. In addition, find out which one of those are the most suitable. The goal is to come up with at construction suggestion of the most suitable construction. 3D CAD-models of SOMAS DN400 ball valve were made at which some modifications were made. It was easy to see the variation in the ball mass when a modification was made in Pro/engineer. We made models of the existing DN400 ball, ball with the bottom cut of and dice shaped ball. When we knew the mass of the alternative shapes and the price of the castings, we calculated the price differences in percent between the different alternatives. We looked at different types of bearings and separations of the valve house, both with loose and fastened axels. Looked at alternative manufacturing methods and alternative materials for the ball. The price on the alternative materials where compared with standard castings (SS 2343). To come up with a size for the seat to a DN500 ball valve, calculations of the seat pressure was made. A diagram over all SOMAS ball valves was made in Excel to calculate necessary closing torque for a floating DN500 ball (floating means that the ball does not have a bearing in the bottom look, at figur 2 page 15). We conclude that we had to mount the ball in bearings to minimize the torque. Calculated bearing pressure and shear in the shafts to come up with required length and diameter of those. Computed on how much the torque reduction was if the ball was mounted in bearings versus floating. We found that a dice shaped ball with bearings, cast axels, milled bearing houses and diagonally split valve house is the most suitable.

Page generated in 0.039 seconds