• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fatigue strength assessment of post weld improved welded joints / Bedömning av utmattning i svets förbättrade fogar i lyftok

Nerbe, Veronika January 2023 (has links)
In this thesis work a literature survey is done to collect published data for T-welded joints with a thickness of 5-12 mm, produced in high strength steel and treated with HFMI. In addition to this, large structures are researched. The data was evaluated in nominal stress and effective notch stress and compared with the recommended FAT value from the International Institute of Welding (IIW) for post-weld improved joints. It was concluded that not sufficient data exist for T-joints in high strength steel, especially steels of grades with yield strength greater than 450 MPa, and thicknesses of 5-12mm, neither does enough data exist for large structures. The recommended fatigue strength values from the IIW were compared. / I detta arbete så kommer en litteraturstudie att genomföras för att samla data om svetsade t- balkar med en tjocklek på 5-12 mm, av materialet höghållfasta stål och behandlade med HFMI. Stora strukturer kommer även att undersökas. Den samlade datan är utvärderad i nominell spänning och effective notch stress och jämförd med International Institute (IIW) of Welding för efterbehandlade svetsar. En slutsats är att det inte finns tillräckligt med data för svetsade t-balkar i höghållfasta stål med en tjocklek mellan 5-12 mm. Data om stora strukturer bör också utvecklas. De rekommenderade utmattningshållfasthets värden från IIW jämfördes.
2

Mechanical Design, Analysis, and Manufacturing of Wind Tunnel Model and Support Structure / Mekanisk design, analys och tillverkning av vindtunnelmodell och stödstruktur

Penela Guerrero, Luis Alfonso January 2022 (has links)
The use of wind tunnel models for aerodynamic research is nowadays indispensable to aviation progress in the last years as aircrafts have become more complex. Wind tunnel model design and manufacturing has adopted many different processes and materials such as the use of a five-axis CNC; making this process a relatively long and expensive one. Composite materials offer a good trade-off between ease and cost of manufacturing compared to the more traditional methods, especially for in-house-built prototypes. This volume covers the different phases from design to manufacturing of a wind tunnel model for the MK18 conceptual blended wing-body UAV designed by KTH Green Raven Project students.The model is a down-scaled 1.5 meter span version with a belly-mounted two-strut support. The main structural requirements for the model are to withstand the aerodynamic loads obtained via CFD simulations. A mechanical interface for the support structure connection was designed. Carbon fiber reinforcement with an epoxy resin matrix was selected as the constituents for the airframe skins. A finite element model of the design was developed by using Abaqus to verify the overall structural behavior and stability. The manufacturing strategy of the airframe skins involved producing lightweight fiberglass molds out of CNC milled MDF male patterns and using vacuum infusion process to obtain the final carbon fiber parts. The internal structure members were manufactured out of different materials and processes from water-jet cutting of aluminum profiles to 3D-printed plastic components. The FEA study results showed that the model withstands the maximum loads with a high safety factor and a wing-tip deflection of less than 2\% of half the wingspan. The manufacturing of the molds turned out to be longer and more complicated than expected, but with overall good results. The composite skins came out with good mechanical and surface quality. The total weight of the model resulted in approximately 4.5 kg. Pressure taps were positioned and installed on the model skins. Their respective tubes routed in CAD to visualize the networking for manufacturing. This ensured proper placement to balance ease of installation with meaningful data collection. / Användningen av vindtunnelmodeller för aerodynamisk forskning är idag oumbärlig för flygets framsteg eftersom flygplan de senaste åren har blivit mer komplexa. Vindtunnelmodelldesign och konstruktion har använder många olika tillverkningsmetoder och material såsom femaxlig CNC; vilket gör processen relativt långsam och dyr. Kompositmaterial ger en bra avvägning mellan enkelhet och tillverkningskostnad jämfört med de mer traditionella metoderna, särskilt för egenbyggda prototyper. Denna rapport behandlar faserna från design till tillverkning av en vindtunnelmodell för en konceptuell blended wing-body UAV, MK18, konstruerad av KTH Green Raven Project­studenter. Modellen är en nedskalad version med 1,5 meter spännvidd som monteras på ett bukmonterat, tvådelat stöd. De viktigaste kraven på modellen är att kunna motstå de aerodynamiska belastningarna som beräknats via CFD­simuleringar. Den interna strukturen i modellen utformades för att integrera anslutningen med stödstrukturen. Kolfiber tillsammans med en epoxihartsmatris valdes som beståndsdelar för flygplanets skal. En finit elementmodell av designen utvecklades med hjälp av Abaqus FEA för att verifiera det övergripande strukturella beteendet och stabiliteten. Tillverkningsstrategin för flygplansskalet innebar att man tillverkade lätta glasfiberformar på CNC­frästa MDF­hanformar och använde en vakuuminfusionsprocess (VIP) för att erhålla de slutliga kolfiberdelarna. De inre strukturdelarna tillverkades av olika material och processer från bearbetning av aluminiumprofiler till 3D­utskrivna plastkomponenter. FEA­studieresultaten visade att modellen tål de maximala belastningarna med en hög säkerhetsfaktor och uppvisar en utböjning vid vingspetsarna på mindre än 2% av halva spännvidden. Tillverkningen av formarna visade sig ta längre tid och vara mer komplicerad än väntat, men gav övergripande goda resultat. Kompositskalet visade sig ha god mekanisk ytskvalitet. Modellens totala vikt blev under 5 kg. Hål för tryckmätning placerades också på modellens skal och rören drogs i en CADmodell för att visualisera nätverket för tillverkning. Detta säkerställde korrekt placering för att balansera enkelhet i installationen med meningsfull datainsamling.
3

Life cycle energy optimization as a tool to compare and evaluate the optimal design in the automotive industry / Livscykelsenergioptimering som ett verktyg för att jämföra och utvärdera de optimala formgivningarna av produkter inom fordonsindustrin

Jonsson, Robert January 2020 (has links)
Fiber reinforced plastics are composite materials that offer a lower weight, while still mechanically perform at least as good as conventional materials such as steel. This makes them attractive for the automotive industry since the implementation of them in e.g. a car frame would enable the manufacturers to sell a more fuel efficient vehicle to the customer. The manufacturing of composites is however more energy intense than for steel and the recycling capabilities are limited. This encourages the car designer to regard the product from a macro-perspective, spanning from the extraction of the resources needed to produce the material, to the phase where the product which the material constitutes is disposed. By analyzing such a macro-perspective, the life cycle energy of a product system can be estimated. Since the life cycle energy is correlated to the component design, an optimization problem can be established where the objective function to be minimized is the total life cycle energy. The component design can be expressed in terms of optimization design variables, yielding that the minimum energy is achieved by the optimal design. This methodology is called life cycle energy optimization (LCEO). The aim of this thesis is to apply this method and present a comparison between different materials and recycling strategies for a load carrying frame component provided by Volvo Cars. The materials studied are carbon fiber reinforced plastics (CFRP), glass fiber sheet moulding compound (GF-SMC) and conventional steel. A Python model consisting of five life cycle phases where each phase was described by a function was implemented. Each function uses the component geometry and material properties as an input and gives the energy of the phase as an output. By summing the outputted energies, the life cycle energy is obtained. The distribution of the results is visualized with bar plots. The results show that the least energy demanding option is to manufacture the component in GF-SMC and process the end-of-life product mechanically. If the fiber degradation is taken into account, the most efficient strategy is to manufacture the component in CFRP and recycle it using solvolysis. This thesis shows that the LCEO methodology can be used as a tool for designers to include the recyclability in an early phase of the product development. Future challenges concern the development of industrial recycling of fiber reinforced plastics where the fiber degradation is minimized. / Fiberförstärkta polymerplaster är kompositmaterial som erbjuder en lägre vikt än konventionella material som stål, samtidigt som de bibehåller den mekaniska prestandan. Detta gör dem intressanta för fordonsindustrin då nyttjandet av dem skulle möjliggöra tillverkare att sälja bränsleeffektivare bilar. Tillverkningen av sådana kompositer är dock mer energikrävande än den för stål och deras återvinningsmöjligheter är begränsade. Detta skapar för fordonsformgivaren ett incitament att beakta produkten i ett makroperspektiv som sträcker sig från utvinningen av naturresurserna för att skapa materialet, till slutskedet av produktens avsedda användning. Genom att bestämma hur den ackumulerade energin är fördelad i ett sådant makroperspektiv kan den total livscykelenergin beräknas. Eftersom livscykelenergin är kopplad till komponentens formgivning, kan ett optimeringsproblem med livscykelenergin som målfunktion att minimeras ställas upp. Komponentens formgivning kan uttryckas som optimeringsproblemets designvariabler. Den design som ger den lägsta livscykelenergin blir därmed den optimala formgivningen. Denna metod kallas livscykelenergioptimering (LCEO). Målet med detta examensarbete är att tillämpa denna metod på en lastbärande bilkomponent tillhandahållen av Volvo Cars och genomföra en jämförelseanalys mellan olika material samt återvinningsstrategier. Materialen som undersöks är kolfiberförstärkt härdplastkompist (CFRP), sheet moulding compound med glasfiber (GF-SMC) och konventionellt stål. Den Pythonimplementerade modellen består av fem livscykelfaser där varje fas uttrycks om en funktion med komponentgeomterin samt materialegenskaperna som indata och ger energiåtgången för fasen som utdata. Genom att summera energierna erhålls livscykelenergin och genom att presentera resultaten i ett stapeldiagram kan livscykelenergidistributionen visualiseras. Resultaten visar att det minst energikrävande alternativet är att tillverka komponenten i GF-SMC och återvinna produkten genom mekanisk bearbetning. Om hänsyn tas till fiberslitage blir den optimala lösningen att tillverka komponenten i CFRP och återvinna den genom solvolys. Detta arbete visar att LCEO- metoden, i ett tidigt skede, kan användas som ett verktyg av formgivare för att inkludera hur väl en produkt kan återvinnas. Framtida utmaningar består av att utveckla återvinningen av fiberförstärkta härdplaster industriellt, så att fiberslitaget minimeras.

Page generated in 0.1272 seconds