• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude des dommages de l'ADN impliquant des pontages ADN-protéines et ADN-polyamines / Study of DNA damages involving DNA-proteins and DNA-polyamines crosslinks

Silerme, Stéphanie 31 October 2014 (has links)
Un pontage ADN-protéine se forme lorsqu'une protéine se lie de façon covalente à l'ADN, ce qui a pour conséquence de bloquer certains processus biologiques tels que la réplication, la transcription, la réparation ou la recombinaison. Ces travaux de thèse consistent en l'étude des pontages se produisant lors d'une oxydation à un électron de l'ADN. La guanine possède le potentiel d'ionisation le plus bas parmi les composants de l'ADN; elle est donc facilement oxydée pour former un radical cation, lui-même impliqué dans la formation de nombreuses lésions oxydatives. Des travaux antérieurs ont permis de mettre en évidence la formation d'un adduit entre la guanine et la lysine, résultant de l'oxydation à un électron d'un oligonucléotide TGT en présence d'un peptide trilysine. Le mécanisme de cette réaction est une addition nucléophile de l'acide aminé central par le groupement amine ε, en position C8 du radical cation de la guanine. L'objectif de cette thèse a été de caractériser l'adduit guanine-lysine, de le quantifier dans l'ADN isolé puis dans l'ADN cellulaire, et d'étudier son implication dans la formation des pontages ADN-protéines. Différentes espèces nucléophiles sont capables de s'additionner sur le radical cation de la guanine. Nous nous sommes intéressés au cas des polyamines endogènes, qui sont des cations organiques présents en particulier dans le noyau des cellules. Ces molécules interviennent dans la stabilisation et la condensation de l'ADN, mais elles participent également à de nombreux processus cellulaires. Le lien entre polyamines et cancer a été largement décrit. Cependant le mécanisme par lequel la perturbation de leur métabolisme est impliquée dans le processus cancérogenèse reste à ce jour peu connu.Dans un premier temps, ces lésions ont été synthétisées chimiquement, sous la forme de nucléosides modifiés, afin de les caractériser. Par la suite des méthodes de quantification de ces dommages par chromatographie liquide haute performance couplée à la spectrométrie de masse en tandem ont été développées. Ces méthodes analytiques nous ont permis de démontrer que les adduits guanine-lysine et guanine-polyamines pouvaient se former dans l'ADN isolé suite à une oxydation à un électron. Des pontages entre guanine et lysine ont été mis en évidence dans l'ADN extrait de cellules THP1 irradiées par impulsions laser à 266 nm. Nous avons ensuite développé différents modèles de pontages entre un peptide et un oligonucléotide, afin d'étudier la structure chimique du pontage, et de déterminer si celui-ci pouvait se produire entre la guanine et la lysine. Des adduits guanine-polyamines ont également été détectés dans de l'ADN extrait de spermatozoïdes. Ces résultats ouvrent de nouvelles perspectives dans la compréhension du rôle physiologique des polyamines ainsi que de leur implication dans la fertilité masculine. / A DNA-protein crosslink (DPC) occurs when a protein becomes covalently bound to DNA. This kind of lesions seems to affect several metabolic processes, including DNA replication, transcription, repair and recombination. This PhD work deals with crosslinks which are formed through a one-electron oxidation of DNA. Guanine exhibits the lowest ionization potential among DNA components, therefore it is readily oxidized leading to the formation of a radical cation, which is involved in the formation of numerous oxidative DNA lesions. In a previous study, a crosslink between guanine moiety and a lysine residue, generated subsequently to a one electron oxidation of a TGT oligonucleotide in the presence of a trilysine peptide, has been described. The mechanism of formation of this adduct relies on the nucleophylic addition of the ε amino group of lysine onto the C8 position of the guanine radical cation. The aim of the present work was to characterize the guanine-lysine adduct and to quantify this lesion in isolated DNA and then in cellular DNA, and to investigate their implication in DNA-protein crosslinks. Several nucleophylic species are able to react with the guanine radical cation. We focused on polyamines, which are organic cations localized in the nucleus of cells at millimolar concentration ranges. These molecules are involved in stabilization and condensation of DNA, and participate also in numerous cellular processes. The relation between polyamine and cancer has been widely described. The mechanism by which dysregulation in their metabolism is related to carcinogenesis is still unknown.In the first part of this project, we focused on the synthesis and the characterization of these lesions as modified nucleosides. Subsequently, we have developed and optimized methods of quantification of these damages, using HPLC coupled with tandem mass spectrometry. Thanks to these analytical methods, we have demonstrated that guanine-lysine and guanine-polyamines adducts could be formed in isolated DNA following a one electron oxidation. Crosslinks between guanine and lysine have been highlighted in DNA extracted from THP1 cells exposed to laser pulses at 266 nm. We have then developed several crosslinks models between a peptide and an oligonucleotide, in order to investigate the chemical structure of the crosslink and determine whether it could occur between guanine and lysine. Guanine-polyamines adducts have also been detected in DNA extracted from sperm cells. These results open new prospects in the understanding of the physiological role of polyamines as well as their involvement in male fertility.
12

Réponse cellulaire induite par les dommages de l'ADN créés par les ecteinascidines, une classe unique de médicaments anticancéreux. / Cellular response associated to lesions induced by ecteinascidins, a unique class of anticancer drugs

Bouzid, Hana 20 November 2015 (has links)
Les ectéinascidines (la trabectédine, la lurbinectédine) sont de nouveaux dérivés de produits naturels marins qui se lient de façon covalente à l'ADN, actifs contre les cancers chimio-résistants. L'objectif de ma thèse est 1) d'identifier les principales voies de transduction activées en réponse à l'apparition des lésions de l'ADN induites par les ETs 2) d'établir si l'abrogation pharmacologique de la réponse cellulaire induite par l'endommagement de l'ADN (ATM, ATR, Chk1, Chk2) peut moduler l'activité thérapeutique des ETs. Dans un premier temps, nous avons montré que la voie ATR/Chk1 activée principalement en réponse à l'apparition d'un stress réplicatif et la voie ATM/Chk2 qui initie la réponse cellulaire suite à la formation de lésions double-brins, sont activées en réponse aux adduits créés par les ETs. Dans un second temps, nous avons montré que les combinaisons des ETs avec les inhibiteurs Chk1/Chk2 ou les inhibiteurs ATR ou ATM seuls s'accompagnent d'une modeste potentialisation. Inversement, la combinaison simultanée des ETs avec les inhibiteurs ATR et ATM entraine une forte synergie dans les modèles du cancer de l'utérus et de l'ovaire sensibles ou résistants au cisplatine. Enfin, nous avons montré que cette potentialisation passe par l'inhibition du recrutement des protéines impliquées dans l'initiation et la réalisation des mécanismes de réparation par recombinaison homologue. Ces résultats suggèrent qu'en inhibant simultanément les vois initiés par ATR et ATM, l'activité thérapeutique des ETs pourrait être potentialisée en clinique. / Ecteinascidins (Trabectedin, Lurbinectedin) are novel marine derived natural products, DNA minor groove binders and active against chemo-resistant cancers. The purpose of my thesis was to 1) characterize the DNA damage response (DDR) to both trabectedin and lurbinectedin 2) to establish whether the pharmacological abrogation of cell response induced by DNA damage (ATM, ATR, Chk1, Chk2) can modulate the therapeutic activity of ETs. Our results show that both compounds activate the ATM/Chk2 (ataxia-telangiectasia mutated/checkpoint kinase 2) and ATR/Chk1 (ATM and RAD3-related/checkpoint kinase 1) pathways. Interestingly, the pharmacological inhibition of either Chk1/2, ATR or ATM kinases is not accompanied by a significant improvement of either trabectedin or lurbinectedin cytotoxic activity. However, the simultaneous inhibition of both ATM and ATR strongly potentiates the activity of both ETs. Importantly, these results are not restricted to HeLa cells but can also be extended to cisplatin-sensitive or -resistant ovarian carcinoma cell lines. Finally, we showed that the concomitant inhibition of both ATR and ATM is an absolute requirement to efficiently block the initiation and realization of homologous recombination repair mechanisms. Together, our data identify ATR and ATM as central coordinators of the DDR to trabectedin and lurbinectedin and provide a mechanistic rational for combinations of these compounds with both ATR and ATM inhibitors.
13

Kinesin-13, tubulins and their new roles in DNA damage repair

Paydar, Mohammadjavad 12 1900 (has links)
Les microtubules sont de longs polymères cylindriques de la protéine α, β tubuline, utilisés dans les cellules pour construire le cytosquelette, le fuseau mitotique et les axonèmes. Ces polymères creux sont cruciaux pour de nombreuses fonctions cellulaires, y compris le transport intracellulaire et la ségrégation chromosomique pendant la division cellulaire. Au fur et à mesure que les cellules se développent, se divisent et se différencient, les microtubules passent par un processus, appelé instabilité dynamique, ce qui signifie qu’ils basculent constamment entre les états de croissance et de rétrécissement. Cette caractéristique conservée et fondamentale des microtubules est étroitement régulée par des familles de protéines associées aux microtubules. Les protéines de kinésine-13 sont une famille de facteurs régulateurs de microtubules qui dépolymérisent catalytiquement les extrémités des microtubules. Cette thèse traite d’abord des concepts mécanistiques sur le cycle catalytique de la kinésine-13. Afin de mieux comprendre le mécanisme moléculaire par lequel les protéines de kinésine-13 induisent la dépolymérisation des microtubules, nous rapportons la structure cristalline d’un monomère de kinésine-13 catalytiquement actif (Kif2A) en complexe avec deux hétérodimères αβ-tubuline courbés dans un réseau tête-à-queue. Nous démontrons également l’importance du « cou » spécifique à la classe de kinésine-13 dans la dépolymérisation catalytique des microtubules. Ensuite, nous avons cherché à fournir la base moléculaire de l’hydrolyse tubuline-guanosine triphosphate (GTP) et son rôle dans la dynamique des microtubules. Dans le modèle que nous présentons ici, l’hydrolyse tubuline-GTP pourrait être déclenchée par les changements conformationnels induits par les protéines kinésine-13 ou par l’agent chimique stabilisant paclitaxel. Nous fournissons également des preuves biochimiques montrant que les changements conformationnels des dimères de tubuline précèdent le renouvellement de la tubuline-GTP, ce qui indique que ce processus est déclenché mécaniquement. Ensuite, nous avons identifié la kinésine de microtubule Kif2C comme une protéine associée à des modèles d’ADN imitant la rupture double brin (DSB) et à d’autres protéines de réparation DSB connues dans les extraits d’œufs de Xenope et les cellules de mammifères. Les cassures double brin d’ADN (DSB) sont un type majeur de lésions d’ADN ayant les effets les plus cytotoxiques. En raison de leurs graves impacts sur la survie cellulaire et la stabilité génomique, les DSB d’ADN sont liés à de nombreuses maladies humaines, y compris le cancer. Nous avons constaté que les activités PARP et ATM étaient toutes deux nécessaires pour le recrutement de Kif2C sur les sites de réparation de l’ADN. Kif2C knockout ou inhibition de son activité de dépolymérisation des microtubules a conduit à l’hypersensibilité des dommages à l’ADN et à une réduction de la réparation du DSB via la jonction terminale non homologue et la recombinaison homologue. Dans l’ensemble, notre modèle suggère que les protéines de kinésine-13 peuvent interagir avec les dimères de tubuline aux extrémités microtubules et modifier leurs conformations, moduler l’étendue des extrêmités tubuline-GTP dans les cellules et déclencher le désassemblage des microtubules. Ces deux modèles pourraient être des clés pour démêler les mécanismes impliqués dans le nouveau rôle de Kif2C dans la réparation de l’ADN DSB sans s’associer à des polymères de microtubules. / Microtubules are long, cylindrical polymers of the proteins α, β tubulin, used in cells to construct the cytoskeleton, the mitotic spindle and axonemes. These hollow polymers are crucial for many cellular functions including intracellular transport and chromosome segregation during cell division. As cells grow, divide, and differentiate, microtubules go through a process, called dynamic instability, which means they constantly switch between growth and shrinkage states. This conserved and fundamental feature of microtubules is tightly regulated by families of microtubule-associated proteins (MAPs). Kinesin-13 proteins are a family of microtubule regulatory factors that catalytically depolymerize microtubule ends. This thesis first discusses mechanistic insights into the catalytic cycle of kinesin-13. In order to better understand the molecular mechanism by which kinesin-13 proteins induce microtubule depolymerization, we report the crystal structure of a catalytically active kinesin-13 monomer (Kif2A) in complex with two bent αβ-tubulin heterodimers in a head-to-tail array. We also demonstrate the importance of the kinesin-13 class-specific “neck” in modulating Adenosine triphosphate (ATP) turnover and catalytic depolymerization of microtubules. Then, we aimed to provide the molecular basis for tubulin-Guanosine triphosphate (GTP) hydrolysis and its role in microtubule dynamics. Although it has been known for decades that tubulin-GTP turnover is linked to microtubule dynamics, its precise role in the process and how it is driven are now well understood. In the model we are presenting here, tubulin-GTP hydrolysis could be triggered via the conformational changes induced by kinesin-13 proteins or by the stabilizing chemical agent paclitaxel. We also provide biochemical evidence showing that conformational changes of tubulin dimers precedes the tubulin-GTP turnover, which indicates that this process is triggered mechanically. Next, we identified microtubule kinesin Kif2C as a protein associated with double strand break (DSB)-mimicking DNA templates and other known DSB repair proteins in Xenopus egg extracts and mammalian cells. DNA double strand breaks (DSBs) are a major type of DNA lesions with the most cytotoxic effects. Due to their sever impacts on cell survival and genomic stability, DNA DSBs are related to many human diseases including cancer. Here we found that PARP and ATM activities were both required for the recruitment of Kif2C to DNA repair sites. Kif2C knockdown/knockout or inhibition of its microtubule depolymerizing activity led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both non-homologous end-joining (NHEJ) and homologous recombination (HR). Interestingly, genetic depletion of KIF2C, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Altogether, our findings shed light on the mechanisms involved in kinesin-13 catalyzed microtubule depolymerization. Our tubulin-GTP hydrolysis model suggests that kinesin-13 proteins may interact with tubulin dimers at microtubules ends and alter their conformations, modulate the extent of the GTP caps in cells and trigger microtubule disassembly. These two models could be keys to unravel the mechanisms involved in the novel role of Kif2C in DNA DSB repair without associating with microtubule polymers.

Page generated in 0.0654 seconds