• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solving Nested Recursions with Trees

Isgur, Abraham 19 June 2014 (has links)
This thesis concerns the use of labelled infinite trees to solve families of nested recursions of the form $R(n)=\sum_{i=1}^kR(n-a_i-\sum_{j=1}^{p_i}R(n-b_{ij}))+w$, where $a_i$ is a nonnegative integer, $w$ is any integer, and $b_{ij},k,$ and $p_i$ are natural numbers. We show that the solutions to many families of such nested recursions have an intriguing combinatorial interpretation, namely, they count nodes on the bottom level of labelled infinite trees that correspond to the recursion. Furthermore, we show how the parameters defining these recursion families relate in a natural way to specific structural properties of the corresponding tree families. We introduce a general tree ``pruning" methodology that we use to establish all the required tree-sequence correspondences.
2

Solving Nested Recursions with Trees

Isgur, Abraham 19 June 2014 (has links)
This thesis concerns the use of labelled infinite trees to solve families of nested recursions of the form $R(n)=\sum_{i=1}^kR(n-a_i-\sum_{j=1}^{p_i}R(n-b_{ij}))+w$, where $a_i$ is a nonnegative integer, $w$ is any integer, and $b_{ij},k,$ and $p_i$ are natural numbers. We show that the solutions to many families of such nested recursions have an intriguing combinatorial interpretation, namely, they count nodes on the bottom level of labelled infinite trees that correspond to the recursion. Furthermore, we show how the parameters defining these recursion families relate in a natural way to specific structural properties of the corresponding tree families. We introduce a general tree ``pruning" methodology that we use to establish all the required tree-sequence correspondences.
3

Elementos de Semántica Denotacional de Lenguajes de Programación con Datos Borrosos

Sánchez Álvarez, Daniel 01 October 1999 (has links)
A fin de diseñar e implementar lenguajes de programación que tengan en cuenta el paradigma borroso modificaremos el lambda cálculo clásico, adjuntando a cada término un grado, y redefiniendo la beta-reducción, obteniendo que para que el nuevo cálculo verifique la propiedad de Church-Rosser la transmisión de los grados debe hacerse por medio de una función que sea una t-norma o s-conorma. Utilizando esta nueva herramienta diseñamos un lenguaje no determinista que satisface los requerimientos de la programación con datos borrosos. / With the aim of designing and implementing programming languages that take into account the fuzzy paradigm we will modify the classical lambda calculus by adding a degree to each term and by redefining the b-reduction. Thus, for the new calculus to verify the Church-Rosser property, the degree computed with can be made through a function that is a t-norm or an s-conorm. With this new tool we design a nondeterminist language that satisfies fuzzy dataprogramming requirements, and an example of its behaviour is shown.

Page generated in 0.0676 seconds