Spelling suggestions: "subject:"faite"" "subject:"laity""
1 |
Plug and play reconfigurable solutions for heterogeneous IoTMikhaylov, K. (Konstantin) 27 March 2018 (has links)
Abstract
The world is rapidly developing into a networked society, where people, machines, data, services and applications are tightly integrated by means of information and communications technology. The members of Wireless Sensor requires solutions to support the unprecedented level of the system’s pervasion and heterogeneity, solutions which are missing today.
Today’s device-level design procedures are an obstacle in the transition to this heterogeneous future, which demands diverse Internet of Things (IoT) devices, including low-end and low-power ones. Reducing the design and production costs of devices in low to mid-scale production quantities, requires new approaches to cope with application versatility.
To address this problem, this thesis proposes a novel wireless sensor and actuator network (WSAN)/IoT device design methodology based on the combination of two approaches: platform-based design and autoconfiguration, that are applied to hardware (HW) and software (SW) components. Unlike the state-of-the-art methodologies, the methodology proposed enables more flexibility both during the design and after device deployment, while reducing the development expenses and time-to-market. Although neither of the two these approaches is fundamentally novel on its own, in this thesis they are employed in, and adapted to, extremely resource restricted systems.
The feasibility of the methodology is shown by the development of technology artifact representing a Plug-and-Play enabled WSAN/IoT device platform. The new devices are assembled from HW modules, encapsulating the various power supply, processing, transceiver, sensor and actuator units, or sets of those. The central control unit of a device automatically identifies the HW, and configures the SW accordingly.
The technology enablers for this - the HW and SW architectures and interfaces – are reported in this thesis.
Experimentation confirms the viability of the proposed concepts and mechanisms. The utility of the designed solutions has been shown by a series of successful research projects and experimental results. / Tiivistelmä
Maailma on nopeasti muuttumassa verkottuneeksi yhteisöksi, jossa ihmiset, koneet, tiedot, palvelut ja sovellukset ovat integroituneet tiiviisti yhteen tieto- ja viestintätekniikan avulla. Tämän dynaamisen ihmisten ja koneiden välisen yhteisön jäsenillä on erilaisia ja jopa ainutlaatuisia kykyjä. Tämän vision toteutuminen edellyttää toistaiseksi puuttuvia ratkaisuja, jotka tukevat ennennäkemättömän laajalle levinnyttä ja hajanaista järjestelmää.
Nykyiset laitetason suunnittelumenetelmät estävät siirtymisen tähän heterogeeniseen tulevaisuuteen, joka edellyttää monipuolisia IoT-laitteita (Internet of Things, esineiden internet), mukaan lukien yksinkertaiset ja vähän virtaa kuluttavat laitteet. Tuotantomääriltään pienten ja keskisuurten laitteiden suunnittelu- ja tuotantokustannusten vähentäminen edellyttää uusia lähestymistapoja sovellusten monipuolisuuden vuoksi.
Tutkielmassa ehdotetaan tämän ongelman ratkaisuksi uutta langattomien antureiden ja toimilaitteiden verkon (WSAN) / IoT-laitteiden suunnittelumenetelmää, joka perustuu näiden kahden lähestymistavan yhdistelmään: käyttöympäristöön perustuva rakenne ja automaattinen määritys, joita sovelletaan sekä laitteisto- että ohjelmistokomponentteihin. Toisin kuin nykyiset johtavat menetelmät, ehdotettu menetelmä on joustavampi sekä suunnitteluvaiheessa että laitteen käyttöönoton jälkeen. Tämä vähentää kehityskustannuksia ja laitteen markkinoille tuomiseen tarvittavaa aikaa. Vaikka kumpikaan menetelmä ei ole lähtökohtaisesti uusi, tutkielmassa niitä käytetään järjestelmissä, joissa on äärimmäisen rajoitetut resurssit, ja ne sovitetaan niihin.
Menetelmän käyttökelpoisuutta esitellään kehittämällä Plug and Play –yhteensopivaa WSAN-/IoT-laiteympäristöä edustava tekninen artefakti. Uudet laitteet kootaan laitteistomoduuleista, joissa on erilaisia virtalähteitä, prosessori-, lähetin-vastaanotin-, anturija toimilaiteyksikköjä tai niistä koostuvia kokonaisuuksia. Laitteen keskusyksikkö tunnistaa laitteiston automaattisesti ja konfiguroi sen. Tutkielmassa kerrotaan, mitä teknologiaa eli laitteisto- ja ohjelmistoarkkitehtuureja ja -rajapintoja sovelluksessa on käytetty.
|
2 |
Gene product targeting into and membrane trafficking from the endoplasmic/sarcoplasmic reticulum in skeletal myofibersNevalainen, M. (Mika) 15 January 2013 (has links)
Abstract
Skeletal muscle cells (myofibers) are huge multinucleated cells responsible for muscle contraction and hence for the everyday movements of the joints. The structure of these voluminous cells differs greatly from that of the mononucleated cells – the characteristic features of the myofibers include dozens of peripherally located nuclei, tightly packed contractile apparatus and a sophisticatedly organized endomembrane system. The basic physiology involving myofibers is quite well known, but scarce data exist on the membrane biology of the myofibers.
The purpose of this study was to examine the localization of mRNA and the site of protein synthesis in the myofibers. The characterization of the membrane dynamics in muscle cells was also performed.
In this study we utilized a primary cell culture model obtained from the rat flexor digitorum brevis (FDB) muscle. Also frozen sections from the rat extensor digitorum longus muscle were used. The precursor cells of the myofibers – myoblasts and myotubes – were also utilized in some experiments. Furthermore, methods of immunohistochemistry and molecular biology were applied extensively in this study.
We found that in FDB myofibers the mRNA lies just under the plasma membrane. Protein synthesis seemed to be concentrated in the vicinity of nuclei locating beneath the plasma membrane but also in interfibrillar dot-like structures. Protein products moved hundreds of micrometers away from the nuclei of origin. Moreover, there were no barriers for protein movement into the core regions of the myofibers. Movement of proteins was found to be rapid in the cytosol and in the endomembrane system, too. Interestingly, when examining exocytic trafficking we observed that ER-to-Golgi trafficking significantly differed from that of mononucleated cells. Finally, myofibers were found to be able to generate lipid bodies under stress conditions. The dynamics of lipid bodies seemed to deviate from the dynamics found in other cells types.
Nowadays not much muscle research with primary myofibers is done worldwide, and therefore dilemmas involving myofibers such as insulin resistance and myotoxicity of statins are mostly unresolved. The knowledge gained from this study may be used in the future to solve clinical problems related to the cell biology of the myofibers. / Tiivistelmä
Luurankolihassolut eli myofiiberit ovat jättimäisiä monitumaisia soluja, jotka vastaavat lihassupistuksen aikaansaamisesta ja siten mahdollistavat jokapäiväisen liikkumisemme. Näiden suurten solujen rakenne poikkeaa selkeästi yksitumaisten solujen rakenteesta: myofiiberien tunnusomaisia piirteitä ovat kymmenet solun reunoille sijoittuneet tumat, tiiviisti pakkautunut supistumiskoneisto ja monimutkaisesti järjestynyt solukalvostojärjestelmä. Vaikka myofiiberien perusfysiologia tunnetaankin hyvin, niin tiedetään itse myofiiberien kalvostobiologiasta sangen vähän.
Kokonaisuutena tämän tutkimuksen tarkoituksena oli tarkastella mRNA:n ja proteiinisynteesin sijaintia myofiibereissä. Lisäksi selvitimme lihassolujen kalvostodynamiikkaa.
Tässä tutkimuksessa käytimme rotan flexor digitorum brevis (FDB) -lihaksesta saatua primääristä soluviljelymallia. Lisäksi hyödynsimme rotan extensor digitorum longus -lihaksesta hankittuja jääleikkeitä. Joissakin kokeissa käytimme myös myofiiberien esiastesoluja (myoblasteja ja myotuubeja). Immunohistokemian ja molekyylibiologian menetelmiä sovellettiin tutkimuksessa laajasti.
Havaitsimme, että FDB –myofiibereissä mRNA sijaitsee aivan solukalvon alla. Proteiinisynteesi vaikutti olevan keskittynyt solukalvon alla sijaitsevien tumien ympärille, mutta myös solusisäisiin pistemäisiin rakenteisiin. Proteiinituotteet ylsivät satojen mikrometrien päähän alkuperäisestä tumastaan. Lisäksi proteiineille ei ilmennyt leviämisestettä myofiiberin sisäosiin. Leviämisen havaittiin olevan nopeaa sekä solulimassa että solulimakalvostoissa. Tutkiessamme solun eritystoimintaa huomasimme, että kuljetus ER:stä Golgin laitteeseen eroaa huomattavasti yksitumaisten solujen vastaavasta kuljetuksesta. Lopuksi havaitsimme myofiiberien pystyvän muodostamaan rasvapisaroita rasitusolosuhteissa. Rasvapisaroiden käyttäytyminen näytti myös poikkeavan siitä, mitä muissa soluissa on havaittu.
Nykyään lihastutkimusta primäärisoluilla ei juuri tehdä maailmalla, minkä vuoksi myofiibereihin liittyvät lääketieteelliset pulmat kuten insuliiniresistenssi ja statiinien lihashaitat ovat suurelta osin ratkaisematta. Tästä tutkimuksesta saatuja tuloksia voitaneen jatkossa käyttää myofiiberien solubiologiaan liittyvien kliinisten ongelmien selvittämiseen.
|
Page generated in 0.0246 seconds