Spelling suggestions: "subject:"retinopathies"" "subject:"hemoglobinopathies""
11 |
Understanding Molecular Mechanisms of Striated Muscle Laminopathies Using Cellular and Zebrafish ModelsNicolas, Hannah Almira 16 September 2020 (has links)
No description available.
|
12 |
THE ROLES OF NUCLEAR LAMIN AND PROGERIN IN ENDOTHELIAL REMODELING AND WOUND HEALING RESPONSES UNDER FLUID SHEAR STRESSYizhi Jiang (11824001) 10 December 2021 (has links)
<div>As aging proceeds, the occurrence of cardiovascular diseases increases independent of other risk factors. At atherosclerotic sites, the rise in the senescent cell population was also observed. Patients with Hutchinson Gilford Progeria Syndrome (HGPS) also showed accelerated aging syndromes and extensive atherosclerosis progression, which was due to missense mutations on the LMNA gene that led to the production of progerin, an aberrant lamin A isoform instead of regular lamin A protein. Lamins act as structural and functional components in nuclear lamina, and recent findings suggested that the ectopic expression of mutant lamin A or lamin A precursor (prelamin A) not only caused defects in cell mechanics but also disturbed mechanotransduction pathways involving lamin A, both of which may contribute to vascular dysregulation. Moreover, the observation of the accumulation of prelamin A in normal aged vascular cells further suggests shared dysregulations involving lamin A in the vascular system between aged people and HGPS patients.</div><div>In the vascular system, endothelial cells were well regulated by hemodynamic forces in vivo to maintain vascular homeostasis. Endothelial dysfunction, including impaired vasodilation and increased permeability, was regarded as the initial marker of atherosclerosis. Despite recent advancements and discussions about the potential mechanisms of progerin-induced vascular disorders, how progerin triggers endothelial dysfunction in a mechanical environment as an early event during atherosclerotic lesion formation has not been studied intensively.</div><div>To help answer the gap question, we first set our goal to understand the effect of laminar flow at arterial levels on endothelial lamins as part of the aging process. Spatial and temporal changes in lamin A/C expression were observed as cell passage went up without flow present. As shear stress was applied, lamin A/C expressions were modulated on both transcriptional and translational levels, which were also dependent on PDL. To further examine how progerin was involved in EC functions with a particular focus on the flow effects, we next generated a stable endothelial cell line that expressed progerin as our EC aging model. Endothelial wound repair under laminar flow at different rates was characterized, and differential cell proliferation activities, as well as migration deficiencies in progerin-expressing ECs during the process, were also recognized. Furthermore, we also showed the overactivated mTORC2 pathway and unusual actin polymerization activities in these cells after flow application. Our results reported changes in cell migration by progerin with flow application for the first time and provided potential candidate pathways that were disturbed by progerin under arterial flow, which may help explain the high occurrence of atherosclerotic lesions in HGPS vasculature, even at straight portion. The reported progerin-induced wound recovery defects in endothelial cells in the presence of physiological flow may also suggest a mechanism of how progerin disturbs endothelial integrity and functions under mechanical stimuli in the development of vascular pathologies.</div><div>Further extended studies may help to understand the roles of progerin in initiating atherosclerosis, which will aid in the development of potential therapies for those suffering from prelamin A-associated accelerated aging syndromes.</div>
|
13 |
The effect of farnesylated prelamin A accumulation on nuclear morphology and functionGoulbourne, Christopher Nicholas January 2011 (has links)
Failure to process prelamin A, by the enzyme ZMPSTE24, leads to the build up of farnesylated prelamin A, which has been implicated in causing the symptoms experienced in laminopathies and HIV therapy. A common feature to these conditions is the development of an irregular nuclear boundary, often including deep invaginations that form a nucleoplasmic reticulum. Additionally, dysregulated lipid synthesis is frequently associated with improper lamin A processing and I set out to address the molecular mechanisms behind these two features that could explain lipoatrophy experienced in patients. By using siRNA targeted against Zmpste24 I utilised an array of biochemical, molecular and imaging techniques to uncover a mechanism that leads to the production of a nucleoplasmic reticulum that was dependent on both the farnesylated tail of prelamin A and the phosphatidylcholine synthesising enzyme CCTα. The morphology of this structure consisted of an invagination of both the inner and outer nuclear membranes with a cytoplasmic core or just invagination of the inner nuclear membrane. Serial section dual axis electron tomography provided a new insight into the ultrastructural changes at the nuclear periphery that revealed novel structural features. The dysregulation of lipid synthesis was assessed by investigating the effects farnesylated prelamin A has on the distribution and dynamics of the transcription factor SREBP-1 and assessment of the downstream consequences this has on its targets that regulate adipocyte differentiation potential. Finally, the metabolomic profile of an HIV protease inhibitor that leads to prelamin A build up was generated and revealed increases in lipolysis, glycolysis and mediators of inflammation. The research presented offers a new insight into the development of a convoluted nuclear boundary and nucleoplasmic reticulum, in the context of lamin A mutants and how dysregulated lipid synthesis, caused by farnesylated prelamin A, leads to lipoatrophy.
|
14 |
DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane ProteinsLevesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
|
15 |
DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane ProteinsLevesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
|
16 |
DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane ProteinsLevesque, Steve 04 May 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
|
17 |
DNA Methylation, Cellular Stress Response and Expression of Inner Nuclear Membrane ProteinsLevesque, Steve January 2011 (has links)
Hutchinson-Gilford Progeria Syndrome is described as a series of mutations within the lamin A gene leading to the accumulation of progerin in the nucleus, contributing to premature aging and affecting the epigenetic control. Epigenetic control, such as DNA methylation, relies on DNA methyltransferase enzymes. In human cells, heat shock (HS) leads to the formation of nuclear stress bodies (nSBs); ribonucleoprotein aggregates of Sat III RNA and RNA-binding proteins. The objectives of this study were to determine if epigenetic status induces varying responses to HS and assess the variability of nuclear proteins in similar conditions. Results show epigenetic modifications do not prevent a stress response; however the extent may be affected. In addition the functions of most nuclear antigens were not affected. It is most likely the sum of interactions at the inner nuclear membrane and nuclear lamina interface that result in nuclear strength pertaining to lamin A.
|
Page generated in 0.0668 seconds