• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Land Use and Land Cover Change Detection in Isfahan, Iran Using Remote Sensing Techniques

Alavi Shoushtari, Niloofar 09 May 2012 (has links)
Rapid urban growth and unprecedented rural to urban transition, along with a huge population growth are new phenomena for both high and low income countries, which started in the mid-20th century. However, urban growth rates and patterns are different in developed countries and developing ones. In less developed countries, urbanization and rural to urban transition usually takes place in an unmanaged way and they are associated with a series of socioeconomical and environmental issues and problems. Identification of the city growth trends in past decades can help urban planners and managers to minimize these negative impacts. In this research, urban growth in the city of Isfahan, Iran, is the subject of study. Isfahan the third largest city in Iran has experienced a huge urban growth and population boom during the last three decades. This transition led to the destruction of natural and agricultural lands and environmental pollutions. Historical and recent remotely sensed data, along with different remote sensing techniques and methods have been used by researchers for urban land use and land cover change detection. In this study three Landsat TM and ETM+ images of the study site, acquired in 1985, 2000 and 2009 are used. Before starting processing, radiometric normalization is done to minimize the atmospheric effects. Then, processing methods including principal component analysis (PCA), vegetation indices and supervised classification are implemented on the images. Accuracy assessment of the PCA method showed that the first PC was responsible for more than 81% of the total variance, and therefore used for analysis of PCA differencing. ΔPC1t1-t2 shows the amount of changes in land use and land cover during the period of study. In this study ten vegetation indices were selected to be applied to the 1985 image. Accuracy assessments showed that Transformed Differencing Vegetation Index (TDVI) is the most sensitive and accurate index for mapping vegetation in arid and semi-arid urban areas. Hence, TDVI was applied to the 2000 and 2009 images. ΔTDVIt1-t2 showed the changes in land use and land cover especially the land use transformation from vegetation cover into the urban class. Supervised classification is the last method applied to the images. Training sites were assigned for the selected classes and accuracy was monitored during the process of training site selection. The results of classification show the expansion of urban class and diminishment in natural and agricultural lands.
2

Land Use and Land Cover Change Detection in Isfahan, Iran Using Remote Sensing Techniques

Alavi Shoushtari, Niloofar 09 May 2012 (has links)
Rapid urban growth and unprecedented rural to urban transition, along with a huge population growth are new phenomena for both high and low income countries, which started in the mid-20th century. However, urban growth rates and patterns are different in developed countries and developing ones. In less developed countries, urbanization and rural to urban transition usually takes place in an unmanaged way and they are associated with a series of socioeconomical and environmental issues and problems. Identification of the city growth trends in past decades can help urban planners and managers to minimize these negative impacts. In this research, urban growth in the city of Isfahan, Iran, is the subject of study. Isfahan the third largest city in Iran has experienced a huge urban growth and population boom during the last three decades. This transition led to the destruction of natural and agricultural lands and environmental pollutions. Historical and recent remotely sensed data, along with different remote sensing techniques and methods have been used by researchers for urban land use and land cover change detection. In this study three Landsat TM and ETM+ images of the study site, acquired in 1985, 2000 and 2009 are used. Before starting processing, radiometric normalization is done to minimize the atmospheric effects. Then, processing methods including principal component analysis (PCA), vegetation indices and supervised classification are implemented on the images. Accuracy assessment of the PCA method showed that the first PC was responsible for more than 81% of the total variance, and therefore used for analysis of PCA differencing. ΔPC1t1-t2 shows the amount of changes in land use and land cover during the period of study. In this study ten vegetation indices were selected to be applied to the 1985 image. Accuracy assessments showed that Transformed Differencing Vegetation Index (TDVI) is the most sensitive and accurate index for mapping vegetation in arid and semi-arid urban areas. Hence, TDVI was applied to the 2000 and 2009 images. ΔTDVIt1-t2 showed the changes in land use and land cover especially the land use transformation from vegetation cover into the urban class. Supervised classification is the last method applied to the images. Training sites were assigned for the selected classes and accuracy was monitored during the process of training site selection. The results of classification show the expansion of urban class and diminishment in natural and agricultural lands.
3

Land Use and Land Cover Change Detection in Isfahan, Iran Using Remote Sensing Techniques

Alavi Shoushtari, Niloofar January 2012 (has links)
Rapid urban growth and unprecedented rural to urban transition, along with a huge population growth are new phenomena for both high and low income countries, which started in the mid-20th century. However, urban growth rates and patterns are different in developed countries and developing ones. In less developed countries, urbanization and rural to urban transition usually takes place in an unmanaged way and they are associated with a series of socioeconomical and environmental issues and problems. Identification of the city growth trends in past decades can help urban planners and managers to minimize these negative impacts. In this research, urban growth in the city of Isfahan, Iran, is the subject of study. Isfahan the third largest city in Iran has experienced a huge urban growth and population boom during the last three decades. This transition led to the destruction of natural and agricultural lands and environmental pollutions. Historical and recent remotely sensed data, along with different remote sensing techniques and methods have been used by researchers for urban land use and land cover change detection. In this study three Landsat TM and ETM+ images of the study site, acquired in 1985, 2000 and 2009 are used. Before starting processing, radiometric normalization is done to minimize the atmospheric effects. Then, processing methods including principal component analysis (PCA), vegetation indices and supervised classification are implemented on the images. Accuracy assessment of the PCA method showed that the first PC was responsible for more than 81% of the total variance, and therefore used for analysis of PCA differencing. ΔPC1t1-t2 shows the amount of changes in land use and land cover during the period of study. In this study ten vegetation indices were selected to be applied to the 1985 image. Accuracy assessments showed that Transformed Differencing Vegetation Index (TDVI) is the most sensitive and accurate index for mapping vegetation in arid and semi-arid urban areas. Hence, TDVI was applied to the 2000 and 2009 images. ΔTDVIt1-t2 showed the changes in land use and land cover especially the land use transformation from vegetation cover into the urban class. Supervised classification is the last method applied to the images. Training sites were assigned for the selected classes and accuracy was monitored during the process of training site selection. The results of classification show the expansion of urban class and diminishment in natural and agricultural lands.
4

LAND COVER/USE CHANGE AND CHANGE PATTERN DETECTION USING RADAR AND OPTICAL IMAGES : AN INSTANCE OF URBAN ENVIRONMENT / レーダと光学画像を用いた土地被覆・利用の変化、変化形態の検出 : 都市環境の事例

Bhogendra Mishra 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18556号 / 工博第3917号 / 新制||工||1602(附属図書館) / 31456 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 田村 正行, 准教授 須﨑 純一, 教授 小池 克明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
5

ADVANCED METHODS FOR LAND COVER MAPPING AND CHANGE DETECTION IN HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

Meshkini, Khatereh 04 April 2024 (has links)
New satellite missions have provided High Resolution (HR) Satellite Image Time Series (SITS), offering detailed spatial, spectral, and temporal information for effective monitoring of diverse Earth features including weather, landforms, oceans, vegetation, and agricultural practices. SITS can be used for an accurate understanding of the Land Cover (LC) behavior and providing the possibility of precise mapping of LCs. Moreover, HR SITS presents an unprecedented possibility for the creation and modification of HR Land Cover Change (LCC) and Land Cover Transition (LCT) maps. For the long-term scale, spanning multiple years, it becomes feasible to analyze LCC and the LCTs occurring between consecutive years. Existing methods in literature often analyze bi-temporal images and miss the valuable multi-temporal/multi-annual information of SITS that is crucial for an accurate SITS analysis. As a result, HR SITS necessitates a paradigm shift in processing and methodology development, introducing new challenges in data handling. Yet, the creation of techniques that can effectively manage the high spatial correlation and complementary temporal resolutions of pixels remains paramount. Moreover, the temporal availability of HR data across historical and current archives varies significantly, creating the need for an effective preprocessing to account for factors like atmospheric and radiometric conditions that can affect image reflectance and their applicability in SITS analysis. Flexible and automatic SITS analysis methods can be developed by paying special attention to handling big amounts of data and modeling the correlation and characterization of SITS in space and time. Novel methods should deal with data preparation and pre-processing at large-scale from end-to-end by introducing a set of steps that guarantee reliable SITS analysis while upholding the computational efficiency for a feasible SITS analysis. In this context, the recent strides in deep learning-based frameworks have demonstrated their potential across various image processing tasks, and thus the high relevance for addressing SITS analysis. Deep learning-based methods can be supervised or unsupervised considering their learning process. Supervised deep learning methods rely on labeled training data, which can be impractical for large-scale multi-temporal datasets, due to the challenges of manual labeling. In contrast, unsupervised deep learning methods are favored as they can automatically discover temporal patterns and changes without the need for labeled samples, thereby reducing the computational load, making them more suitable for handling extensive SITS. In this scenario, the objectives of this thesis are mainly three. Firstly, it seeks to establish a robust and reliable framework for the precise mapping of LCs by designing novel techniques for time series analysis. Secondly, it aims to utilize the capacities of unsupervised deep learning methods, such as pretrained Convolutional Neural Networks (CNNs), to construct a comprehensive methodology for Change Detection (CD), thereby mitigating complexity and reducing computational requirements in comparison with supervised methods. This involves the efficient extraction of spatial, spectral, and temporal features from complex multi-temporal, multi-spectral SITS. Lastly, the thesis endeavors to develop novel methods for analyzing LCCs occurring over extended time periods, spanning multiple years. This multifaceted approach encompasses the detection of changes, timing identification, and classification of the specific types of LCTs. The efficacy of the innovative methodologies and associated techniques is showcased through a series of experiments conducted on HR SITS datasets, including those from Sentinel-2 and Landsat. These experiments reveal significant enhancements when compared to existing methods that represent the current state-of-the-art.

Page generated in 0.3511 seconds