11 |
Supercondutividade e a transição de fase supercondutora: Misturas de duas fases na cerâmica (Hg,Re 1223)ELEUTERIO, F. H. S. 15 December 2017 (has links)
Made available in DSpace on 2018-03-22T15:55:39Z (GMT). No. of bitstreams: 1
tese_11668_Tese de doutorado - Fernando H. S. Eleutério.pdf: 1773499 bytes, checksum: e9c2c4b8631ab20a64b11ecf5e0aa507 (MD5)
Previous issue date: 2017-12-15 / O foco deste trabalho é a investigação das duas fases intrínsecas de supercondutores estruturais, utilizando como objeto de estudo a resposta magnética e a sua composição granular. Ao investigar a susceptibilidade magnética ac na cerâmica policristalina a base de mercúrio dopada com rênio (Hg0.82Re0.18Ba2Ca2Cu3O8.16) (Hg,Re)-
1223) com o precursor com teor ótimo de oxigênio, pulverizada (reduzida a pó e peneirada) foi possível determinar a temperatura crítica da amostra e observar que ela depende do tamanho de cada do grão. Para a partícula de 20 μm foi encontrada somente uma temperatura crítica de 133K, porém são observadas duas temperaturas críticas (133K e 98 K) ao ser reduzir ainda mais o tamanho da partícula, a uma escala
mesoscópica de 600 nm. Este fato foi elucidado por uma extensão da teoria de Ginzburg-Landau utilizando dois parâmetros de ordem para parametrizar o campo escalar complexo e fazendo a conexão com o modelo microscópico responsável por descrever as peculiaridades destes tipos de grãos.
|
12 |
Supercondutividade e a transição de fase supercondutora: Misturas de duas fases na cerâmica (Hg,Re 1223)ELEUTERIO, F. H. S. 15 December 2017 (has links)
Made available in DSpace on 2018-08-01T21:59:52Z (GMT). No. of bitstreams: 1
tese_11668_Tese final Fernando Henrique Santos Eleutério - PPGFis20180316-142248.pdf: 1478639 bytes, checksum: 8a421c51018e8816f936d7cac9314677 (MD5)
Previous issue date: 2017-12-15 / O foco deste trabalho é a investigação das duas fases intrínsecas de supercondutores estruturais, utilizando como objeto de estudo a resposta magnética e a sua composição granular. Ao investigar a susceptibilidade magnética ac na cerâmica policristalina a base de mercúrio dopada com rênio (Hg0.82Re0.18Ba2Ca2Cu3O8.16) (Hg,Re)-
1223) com o precursor com teor ótimo de oxigênio, pulverizada (reduzida a pó e peneirada) foi possível determinar a temperatura crítica da amostra e observar que ela depende do tamanho de cada do grão. Para a partícula de 20 μm foi encontrada somente uma temperatura crítica de 133K, porém são observadas duas temperaturas críticas (133K e 98 K) ao ser reduzir ainda mais o tamanho da partícula, a uma escala
mesoscópica de 600 nm. Este fato foi elucidado por uma extensão da teoria de Ginzburg-Landau utilizando dois parâmetros de ordem para parametrizar o campo escalar complexo e fazendo a conexão com o modelo microscópico responsável por descrever as peculiaridades destes tipos de grãos.
|
13 |
The study of quantum oscillations in the normal and superconducting states of Vâ†3SiSankarappa, Talari January 1998 (has links)
No description available.
|
14 |
Vortex motion in type II superconductorsRichardson, Giles William January 1995 (has links)
No description available.
|
15 |
Optically Probing Emergent Phases of Electrons in the Second Landau LevelLevy, Antonio Luis January 2017 (has links)
In this dissertation, I present optical emission and light scattering studies on ultraclean two-dimensional electron systems. These studies focus on emerg- ing phases in the second Landau level.
I report for the excitation spectrum for fractional quantum Hall states at filling factors ν = 2+1/3, ν = 2+3/8, and ν = 2+2/5 through resonant inelastic light scattering. Resonant Rayleigh scattering is used to demonstrate that these fractional quantum Hall states are anisotropic. This work provides new insights into the nature of quasiparticle interactions of these states. It also sets the stage for the subsequent discussions about competing and coexistent phases.
I present studies of emergent phases in the filling factor range 2 ≤ ν ≤ 3 using weak optical emission from the second Landau level and resonant inelas- tic light scattering by spin wave excitations. A multiplet of optical emission peaks observed that exhibit striking filling factor dependence amnifest phase competition in the second Landau level. A correlation of emission peaks in the multiplet with anomalies observed in the spin wave spectrum uncover major impact of the spin degree of freedom on the emergent phases in the second Landau level. These experiments demonstrate the promise of optical emission from excited Landau levels as a probe of emergent phases.
Results from optical emission and resonant inelastic light scattering stud- ies of the second Landau level conducted at higher temperatures (T ≈ 1 K) are also presented. Evidence that many phases observed at these higher temperatures are shown to be the same as those at lower (T ≈ 40 mK) temperatures. Striking and anomalous temperature-dependence of optical emission experiments is used to gain further insight into the nature of these competing phases.
|
16 |
Processos térmicos e estado resistivo em supercondutores mesoscópicos : dinâmica de vórtices e gradiente e difusão térmica estudados usando o teorema da energia livre e o formalismo de Ginzburg-Landau /Duarte, Elwis Carlos Sartorelli. January 2018 (has links)
Orientador: Rafael Zadorosny / Resumo: Este trabalho está estruturado em duas partes. A primeira, envolve o estudo do estado de vórtices e comportamento magnético de um supercondutor mesoscópico submetido a um gradiente térmico. Foi veri cado que a influência de um gradiente térmico altera o estado de vórtice gigante e pode levar a magnetização a ter um comportamento anômalo, o qual depende do parâmetro de Ginzburg-Landau e das temperaturas nas regiões "quente" e "fria". Na segunda parte, abordamos o estado resistivo durante o movimento de um vórtice e durante a dinâmica de par vórtice-antivórtice (V-AV) para os tipos de Abrikosov e Cinemáticos. Estudamos quais parâmetros afetam as propriedades do não equilíbrio e os mecanismos de dissipação presentes no processo de difusão térmica. Para os processos envolvendo vórtice ou V-AV de Abrikosov, os mecanismos de dissipação devido à processos de relaxação contribuem para a maior parte da potência total dissipada e, consequentemente, exercem uma grande contribuição para a variação de temperatura. Por outro lado, para o caso de V-AV cinemáticos, os elétrons normais aparecem como principal mecanismo de dissipação, todavia os processos de relaxação tem uma contribuição considerável para esse caso. Para realizar tais estudos, utilizamos o teorema da energia livre e as equações de Ginzburg- Landau generalizadas. / Abstract: This work is structured in two parts. In the rst one, the vortices states and the magnetic behavior were studied for a mesoscopic superconductor under a thermal gradient. It was veri ed that the thermal gradient changes the giant vortex state and could lead a exotic behavior of the magnetization curve, depending on the parameter and the temperature of the hot and the cold . In the second part, the focus was the resistive state during one vortex motion and during the annihilation process of a vortex-antivortex (V-AV) pair both with Abrikosov and Kinematic types. We de ned which parameters a ect the nonequilibrium proprieties and the dissipative mechanisms present in the thermal di usion processes. For the cases involving a vortex or an Abrikosov's V-AV pair, the dissipative mechanisms due to the relaxation process have the major contribution for the total power dissipated power and consequently, exert great contribuition on the temperature variation. On the other hand, for the case of kinematic V-AV, the normal eletrons rised as the main dissipative mechanism, however relaxation process has a considerable contribuition for this case. To realize such studies, we used the free energy theorem and the generalized Ginzburg-Landau equations. / Doutor
|
17 |
Existence of Critical Points for the Ginzburg-Landau Functional on Riemannian ManifoldsMesaric, Jeffrey Alan 19 February 2010 (has links)
In this dissertation, we employ variational methods to obtain a new existence result for solutions of a Ginzburg-Landau type equation on a Riemannian manifold. We prove that if $N$ is a compact, orientable 3-dimensional Riemannian manifold without boundary and $\gamma$ is a simple, smooth, connected, closed geodesic in $N$ satisfying a natural nondegeneracy condition, then for every $\ep>0$ sufficiently small, $\exists$ a
critical point $u^\ep\in H^1(N;\mathbb{C})$ of the Ginzburg-Landau functional \bd\ds E^\ep(u):=\frac{1}{2\pi |\ln\ep|}\int_N |\nabla u|^2+\frac{(|u|^2-1)^2}{2\ep^2}\ed
and these critical points have the property that $E^\ep(u^\ep)\rightarrow\tx{length}(\gamma)$ as $\ep\rightarrow 0$.
To accomplish this, we appeal to a recent general asymptotic minmax theorem which basically says that if $E^\ep$ $\Gamma$-converges to $E$ (not necessarily defined on the same Banach space as $E^\ep$), $v$ is a saddle point of $E$ and some additional mild hypotheses are met, then there exists $\ep_0>0$ such that for every $\ep\in(0,\ep_0),E^\ep$ possesses a critical point $u^\ep$ and $\lim_{\ep\rightarrow 0}E^\ep(u^\ep)=E(v)$.
Typically, $E$ is only lower semicontinuous, therefore a suitable notion of saddle point is needed.
Using known results on $\mathbb{R}^3$, we show the Ginzburg-Landau functional $E^\ep$ defined above $\Gamma$-converges to a functional $E$ which can be thought of as measuring the arclength of a limiting singular set. Also, we verify using regularity theory for almost-minimal currents that $\gamma$ is a saddle point of $E$ in an appropriate sense.
|
18 |
Existence of Critical Points for the Ginzburg-Landau Functional on Riemannian ManifoldsMesaric, Jeffrey Alan 19 February 2010 (has links)
In this dissertation, we employ variational methods to obtain a new existence result for solutions of a Ginzburg-Landau type equation on a Riemannian manifold. We prove that if $N$ is a compact, orientable 3-dimensional Riemannian manifold without boundary and $\gamma$ is a simple, smooth, connected, closed geodesic in $N$ satisfying a natural nondegeneracy condition, then for every $\ep>0$ sufficiently small, $\exists$ a
critical point $u^\ep\in H^1(N;\mathbb{C})$ of the Ginzburg-Landau functional \bd\ds E^\ep(u):=\frac{1}{2\pi |\ln\ep|}\int_N |\nabla u|^2+\frac{(|u|^2-1)^2}{2\ep^2}\ed
and these critical points have the property that $E^\ep(u^\ep)\rightarrow\tx{length}(\gamma)$ as $\ep\rightarrow 0$.
To accomplish this, we appeal to a recent general asymptotic minmax theorem which basically says that if $E^\ep$ $\Gamma$-converges to $E$ (not necessarily defined on the same Banach space as $E^\ep$), $v$ is a saddle point of $E$ and some additional mild hypotheses are met, then there exists $\ep_0>0$ such that for every $\ep\in(0,\ep_0),E^\ep$ possesses a critical point $u^\ep$ and $\lim_{\ep\rightarrow 0}E^\ep(u^\ep)=E(v)$.
Typically, $E$ is only lower semicontinuous, therefore a suitable notion of saddle point is needed.
Using known results on $\mathbb{R}^3$, we show the Ginzburg-Landau functional $E^\ep$ defined above $\Gamma$-converges to a functional $E$ which can be thought of as measuring the arclength of a limiting singular set. Also, we verify using regularity theory for almost-minimal currents that $\gamma$ is a saddle point of $E$ in an appropriate sense.
|
19 |
A numerical study of steady-state vortex configurations and vortex pinning in type-II superconductorsKim, Sangbum 12 April 2006 (has links)
In part I, a numerical study of the mixed states in a mesoscopic type-II superconducting
cylinder is described. Steady-state configurations and transient behavior of
the magnetic vortices for various values of the applied magnetic field H are presented.
Transitions between different multi-vortex states as H is changed is demonstrated by
abrupt changes in vortex configurations and jumps in the B vs H plot. An efficient
scheme to determine the equilibrium vortex configuration in a mesoscopic system at
any given applied field, not limited to the symmetry of the system, is devised and
demonstrated.
In part II, a superconducting thin film is subject to a non-uniform magnetic field
from a vertical magnetic dipole, consisting of two magnetic monopoles of opposite
charges. For a film with constant thickness and with no pins, it has been found that
the film carries two pairs of vortex-antivortex in the steady state in the imposed
flux range of 2.15 < (Phi)+ < 2.90 (in units of flux quantum) and no vortex at all for
(Phi)+ <= 2.15. Transitions from a superconducting state with 3 pairs of vortex-antivortex
to one with 2 pairs, where a pair of vortex-antivortex annihilates, have been observed
in the pseudo-time sequence. With a perturbation with antidots (holes), vortexantivortex
pair has been created for lower magnetic fluxes down to (Phi)+ = 1.3.
In the sample of size 16(Xi) x 16(Xi), the attraction force between the vortex and
antivortex always dominates over the pinning force, so that they eventually come out
of pins, move toward each other, and annihilate each other. The annihilation rate,
measured with time taken for the annihilation, is reduced noticeably by the increase
of the distance between pins, or the increase in the pin size. A simulation of the
magnetic vortex pinning in the sample of size 32(Xi) x 32(Xi) suggests we are likely to
achieve pinning of the vortex-antivortex pair with the sample size around this and
vortex-antivortex separation of 22(Xi). Using this sample as a template, the maximum
density of pinned vortices achievable is calculates to be about 7.6 x 10^14 vortices/m2
for (Xi) =~ 1.6A°.
|
20 |
Multicomponent superconductivity : Vortex matter and phase transitionsCarlström, Johan January 2013 (has links)
The topic of this thesis is vortex-physics in multi component Ginzburg- Landau models. These models describe a newly discovered class of super- conductors with multiple superconducting gaps, and possess many properties that set them apart from single component models. The work presented here relies on large scale computer simulations using various numerical techniques, but also on some analytical methods. In Paper I, Type-1.5 Superconducting State from an Intrinsic Proximity Effect in Two-Band Superconductors, we show that in multiband supercon- ductors, even an extremely small interband proximity effect can lead to a qualitative change in the interaction potential between superconducting vor- tices, by producing long-range intervortex attraction. This type of vortex interaction results in an unusual response to low magnetic fields, leading to phase separation into domains of two-component Meissner states and vortex droplets. In paper II, Type-1.5 superconductivity in two-band systems, we discuss the influence of Josephson coupling and show that non-monotonic intervortex interaction can also arise in two-band superconductors where one of the bands is proximity induced by Josephson interband coupling. In paper III, Type-1.5 superconductivity in multiband systems: Effects of interband couplings, we investigate the appearance of Type-1.5 superconduc- tivity in the case with two active bands and substantial inter-band couplings such as intrinsic Josephson coupling, mixed gradient coupling, and density- density interactions. We show that in the presence of these interactions, the system supports type-1.5 superconductivity with fundamental length scales being associated with the mass of the gauge field and two masses of normal modes represented by linear combinations of the density fields. In paper IV, Semi-Meissner state and nonpairwise intervortex interactions in type-1.5 superconductors, we demonstrate the existence of nonpairwise in- tervortex forces in multicomponent and layered superconducting systems. We also consider the properties of vortex clusters in a semi-Meissner state of type- 1.5 two-component superconductors. We show that under certain conditions nonpairwise forces can contribute to the formation of complex vortex states in type-1.5 regimes. In paper V, Length scales, collective modes, and type-1.5 regimes in three- band superconductors, we consider systems where frustration in phase dif- ferences occur due to competing Josephson inter-band coupling terms. We show that gradients of densities and phase differences can be inextricably intertwined in vortex excitations in three-band models. This can lead to long-range attractive intervortex interactions and the appearance of type-1.5 regimes even when the intercomponent Josephson coupling is large. We also show that field-induced vortices can lead to a change of broken symmetry from U (1) to U (1) ⇥ Z2 in the system. In the type-1.5 regime, it results in a semi-Meissner state where the system has a macroscopic phase separation in domainswithbrokenU(1)andU(1)⇥Z2 symmetries. In paper VI, Topological Solitons in Three-Band Superconductors with Broken Time Reversal Symmetry, we show that three-band superconductors with broken time reversal symmetry allow magnetic flux-carrying stable topo- logical solitons. They can be induced by fluctuations or quenching the system through a phase transition. It can provide an experimental signature of the time reversal symmetry breakdown. In paper VII, Type-1.5 superconductivity in multiband systems: Magnetic response, broken symmetries and microscopic theory – A brief overview, we give an overview of vortex physics and magnetic response in multi component Ginzburg-Landau theory. We also examine Type-1.5 superconductivity in the context of microscopic theory. In paper VIII, Chiral CP2 skyrmions in three-band superconductors, we show that under certain conditions, three-component superconductors (and, in particular, three-band systems) allow stable topological defects different from vortices. We demonstrate the existence of these excitations, charac- terised by a CP2 topological invariant, in models for three-component super- conductors with broken time-reversal symmetry. We term these topological defects “chiral GL(3) skyrmions,” where “chiral” refers to the fact that due to broken time-reversal symmetry, these defects come in inequivalent left- and right-handed versions. In certain cases, these objects are energetically cheaper than vortices and should be induced by an applied magnetic field. In other situations, these skyrmions are metastable states, which can be produced by a quench. Observation of these defects can signal broken time-reversal sym- metry in three-band superconductors or in Josephson-coupled bilayers of s± and s-wave superconductors. In paper IX, Phase transition in multi-component superconductors, we ex- amine the thermodynamics of frustrated multi-components superconductors and show that their highly complex energy landscape can give rise new types of phase transitions not present in single component superconductors. / <p>QC 20131205</p>
|
Page generated in 0.3351 seconds