• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tidal resource modelling for sites in the vicinity of an island near a landmass

Pérez Ortiz, Alberto January 2017 (has links)
Before tidal stream energy is exploited, tidal power resource and environmental assessments must be undertaken. This thesis explores limits to power extraction for tidal sites defined by a strait between an island and landmass. Numerical simulations provided by Fluidity are used to analyse power extraction from locations in the strait and around the island for an idealised island-landmass domain and an actual coastal site. The numerical model is verified by comparing predictions with analytical solutions for inviscid flow past a circular cylinder located in the centre of a channel and in the vicinity of a wall. The model is then validated against laboratory measurements of flow patterns for impulsively-started flow past a submerged circular cylinder, and for flow past a surface-piercing circular cylinder in oscillatory laminar shallow flow. It is demonstrated that the numerical method captures satisfactorily the mechanisms of early wake formation, which indicates the model can be applied to assess tidal stream resource within the coastal geometries considered herein. Finally, the methodology to account for power extraction is satisfactorily verified for bounded and unbounded flows. Contrary to current practices, results from a parameter study for different idealised coastal sites reveal that the maximum power extracted in the strait is not well approximated by either the power extracted naturally at the seabed or the undisturbed kinetic power. Moreover, an analytical channel model underpredicts the maximum power extracted in the strait due to its inability to account for changes in the driving head resulting from power extraction and flow diversion offshore of the island. An exception is found for islands with large aspect ratios, with the larger dimension extending parallel to the landmass; i.e. the island-landmass geometry approaching that of a channel. In this case, the extracted power is satisfactorily approximated by the power naturally dissipated at the seabed and there is good agreement with the analytical model. The maximum power extracted in the strait is shown to decrease when water depths offshore are greater than in the strait, underlining the importance of fully understanding the wider bathymetry of a given site. A similar conclusion is reached when strait blockage is reduced. The power extraction in the strait is found to be sensitive to both viscosity and seabed friction, and these parameters need to be properly estimated during the setup and calibration of models in order to reduce uncertainty. Power extraction increases when turbines are sited simultaneously both in the strait and offshore. Tidal power assessment is performed for Rathlin Sound, off the coast of Northern Ireland. Again, no clear relationship is found between maximum power extracted in the strait and either the power dissipated naturally at the seabed or the undisturbed kinetic power. A similar ratio of power extracted to undisturbed kinetic power is obtained as for the equivalent idealised model. The analytical channel model underpredicts the maximum power extracted. The actual and idealised coastal site models indicate similar responses to changes in seabed friction, and similar reduction in power extraction with decreasing strait blockage.
2

Development of a Parallel Computational Framework to Solve Flow and Transport in Integrated Surface-Subsurface Hydrologic Systems

Hwang, Hyoun-Tae January 2012 (has links)
HydroGeoSphere (HGS) is a 3D control-volume finite element hydrologic model describing fully-integrated surface-subsurface water flow and solute and thermal energy transport. Because the model solves tightly-coupled highly-nonlinear partial differential equations, often applied at regional and continental scales (for example, to analyze the impact of climate change on water resources), high performance computing (HPC) is essential. The target parallelization includes the composition of the Jacobian matrix for the iterative linearization method and the sparse-matrix solver, preconditioned BiCGSTAB. The Jacobian matrix assembly is parallelized by using a static scheduling scheme with taking account into data racing conditions, which may occur during the matrix construction. The parallelization of the solver is achieved by partitioning the domain into equal-size sub-domains, with an efficient reordering scheme. The computational flow of the BiCGSTAB solver is also modified to reduce the parallelization overhead and to be suitable for parallel architectures. The parallelized model is tested on several benchmark cases that include linear and nonlinear problems involving various domain sizes and degrees of hydrologic complexity. The performance is evaluated in terms of computational robustness and efficiency, using standard scaling performance measures. Simulation profiling results indicate that the efficiency becomes higher for three situations: 1) with an increasing number of nodes/elements in the mesh because the work load per CPU decreases with increasing the number of nodes, which reduces the relative portion of parallel overhead in total computing time., 2) for increasingly nonlinear transient simulations because this makes the coefficient matrix diagonal dominance, and 3) with domains of irregular geometry that increases condition number. These characteristics are promising for the large-scale analysis of water resource problems that involve integrated surface-subsurface flow regimes. Large-scale real-world simulations illustrate the importance of node reordering, which is associated with the process of the domain partitioning. With node reordering, super-scalarable parallel speedup was obtained when compared to a serial simulation performed with natural node ordering. The results indicate that the number of iterations increases as the number of threads increases due to the increased number of elements in the off-diagonal blocks in the coefficient matrix. In terms of the privatization scheme, the parallel efficiency with privatization was higher than that with the shared scheme for most of simulations performed.
3

Development of a Parallel Computational Framework to Solve Flow and Transport in Integrated Surface-Subsurface Hydrologic Systems

Hwang, Hyoun-Tae January 2012 (has links)
HydroGeoSphere (HGS) is a 3D control-volume finite element hydrologic model describing fully-integrated surface-subsurface water flow and solute and thermal energy transport. Because the model solves tightly-coupled highly-nonlinear partial differential equations, often applied at regional and continental scales (for example, to analyze the impact of climate change on water resources), high performance computing (HPC) is essential. The target parallelization includes the composition of the Jacobian matrix for the iterative linearization method and the sparse-matrix solver, preconditioned BiCGSTAB. The Jacobian matrix assembly is parallelized by using a static scheduling scheme with taking account into data racing conditions, which may occur during the matrix construction. The parallelization of the solver is achieved by partitioning the domain into equal-size sub-domains, with an efficient reordering scheme. The computational flow of the BiCGSTAB solver is also modified to reduce the parallelization overhead and to be suitable for parallel architectures. The parallelized model is tested on several benchmark cases that include linear and nonlinear problems involving various domain sizes and degrees of hydrologic complexity. The performance is evaluated in terms of computational robustness and efficiency, using standard scaling performance measures. Simulation profiling results indicate that the efficiency becomes higher for three situations: 1) with an increasing number of nodes/elements in the mesh because the work load per CPU decreases with increasing the number of nodes, which reduces the relative portion of parallel overhead in total computing time., 2) for increasingly nonlinear transient simulations because this makes the coefficient matrix diagonal dominance, and 3) with domains of irregular geometry that increases condition number. These characteristics are promising for the large-scale analysis of water resource problems that involve integrated surface-subsurface flow regimes. Large-scale real-world simulations illustrate the importance of node reordering, which is associated with the process of the domain partitioning. With node reordering, super-scalarable parallel speedup was obtained when compared to a serial simulation performed with natural node ordering. The results indicate that the number of iterations increases as the number of threads increases due to the increased number of elements in the off-diagonal blocks in the coefficient matrix. In terms of the privatization scheme, the parallel efficiency with privatization was higher than that with the shared scheme for most of simulations performed.
4

Urban Building vid Hornsbruksgatan / Både och

Golitsyn, Alexey January 2012 (has links)
Upgift: att bygga en urban byggnad i Högalidsparken vid Hornsbruksgatan. Idén att bygga i en park är provokativ pga ett starkt intrång i stadens publika liv. Stadsparker har inte endast rekreationsrollen, de är också publika platser: platser för motion, lek, idrott, föreställningar, möten osv. Och i detta projekt - för arbete och boende dessutom. Förslagets mål är att skapa en struktur som suddar bort ett kraftigt avbrott mellan parken och gatan och förenar dem och samtidigt har ett rikt programmatiskt innehåll; att skapa ett attraktivt och eftertraktat publikt rum på taken och ett flexibelt privat rum under det.
5

The Macroecology of Island Floras

Weigelt, Patrick 17 December 2013 (has links)
Marine Inseln beherbergen einen großen Teil der biologischen Vielfalt unseres Planeten und weisen gleichzeitig einen hohen Anteil endemischer Arten auf. Inselbiota sind allerdings zudem besonders anfällig für anthropogene Einflüsse wie den globalen Klimawandel, Habitatverlust und invasive Arten. Für ihren Erhalt ist es daher wichtig, die ökologischen Prozesse auf Inseln detailliert zu verstehen. Aufgrund ihrer definierten Größe und isolierten Lage eignen sich Inseln als Modellsysteme in der ökologischen und evolutionären Forschung. Der Großteil der bisherigen Inselstudien hat sich allerdings mit kleinräumigen Mustern befasst, so dass standardisierte globale Daten zu den biogeographischen Eigenschaften und eine makroökologische Synthese ihrer Biota bislang fehlen. In dieser Arbeit stelle ich eine physische und bioklimatische Charakterisierung der Inseln der Welt vor und behandle die Frage, wie abiotische Inseleigenschaften die Diversität von Inselfloren beeinflussen. Ich bearbeite zwei Hauptaspekte dieser Fragestellung: Zuerst konzentriere ich mich auf historische und heutige Klimabedingungen und physische Inseleigenschaften als Triebfedern von Pflanzendiversitätsmustern auf Inseln. Hierbei setze ich einen Schwerpunkt auf die räumliche Anordnung von Inseln und Struktur von Archipelen. Als Zweites behandle ich taxon-spezifische Unterschiede in der Antwort von Diversitätsmustern auf abiotische Faktoren. Hierzu stelle ich eine globale Datenbank mit historischen und heutigen Klimabedingungen und physischen Eigenschaften, wie Fläche, Isolation und Geologie, von 17883 Inseln größer als 1 km² vor. Mit Hilfe von Ordinations- und Klassifikationsverfahren charakterisiere und klassifiziere ich die Inseln in einem multidimensionalen Umweltraum. Außerdem entwickele ich einen Satz von ökologisch relevanten Maßen zur Beschreibung von Isolation von Inseln und ihrer räumlichen Anordnung in Archipelen, darunter Maße zu Trittstein-Inseln, Wind- und Meeresströmungen, klimatischer Ähnlichkeit, Distanzen zwischen Inseln und umgebender Landfläche. Diese Maße berücksichtigen verschiedene Aspekte von Isolation, welche Immigration, Artbildung und Aussterben auf Inseln sowie Austausch zwischen Inseln beeinflussen. Um abiotische Bedingungen mit biotischen Eigenschaften von Inselfloren in Verbindung zu bringen, nutze ich eine für diese Arbeit erstellte Datenbank aus 1295 Insel-Artenlisten, die insgesamt ca. 45000 heimische Gefäßpflanzenarten umfassen. Dies ist der umfassendste und erste globale Datensatz für Pflanzen auf Inseln, der Artidentitäten anstatt lediglich Artenzahlen beinhaltet. Die globale Insel-Charakterisierung bestätigt quantitativ, dass sich Inseln in bioklimatischen und physischen Eigenschaften vom Festland unterscheiden. Inseln sind im Durchschnitt signifikant kühler, feuchter und weniger saisonal geprägt als das Festland. Die weiteren Ergebnisse zeigen, dass eine sorgfältige Beschreibung der räumlich-physischen Eigenschaften von Inseln und Archipelen nötig ist, um die Diversitätsmuster ihrer Biota zu verstehen. Isolation ist nach Inselfläche der zweitwichtigste Einflussfaktor für den Gefäßpflanzenartenreichtum auf Inseln. Von den verglichenen Isolationsmaßen eignet sich der Anteil an umgebender Landfläche am besten zur Erklärung der Artenzahlen. Außerdem erhöht sich durch die Berücksichtigung von Trittsteininseln, großen Inseln als Quell-Landflächen und klimatischer Ähnlichkeit der Quell-Landflächen die Vorhersagekraft der Modelle. Isolation spielt eine geringere Rolle auf großen Inseln, wo in situ Diversifizierung den negativen Effekt von Isolation auf Immigration ausgleicht. Die räumliche Struktur innerhalb von Archipelen ist von besonderer Bedeutung für β-Diversität, d.h. für den Unterschied in der Artenzusammensetzung der Inseln. Außerdem beeinflusst sie indirekt, durch den Effekt auf die β-Diversität, auch die γ-Diversität, d.h. die Diversität des gesamten Archipels. Die Ergebnisse heben die enorme Bedeutung der relativen räumlichen Position von Inseln zueinander für Diversitätsmuster auf Inseln hervor und zeigen die Notwendigkeit für Inselforschung und Naturschutz, Inseln im Kontext ihres Archipels zu betrachten. Die Ergebnisse für Farne auf südostasiatischen Inseln zeigen, dass die Bedeutung von physischen Inseleigenschaften für Diversität kontinuierlich mit der Größe der betrachteten Untersuchungsfläche von der Insel- bis zur Plotebene abnimmt, wohingegen der Einfluss von lokalen Umweltbedingungen zunimmt. Lokale Artgemeinschaften sind häufig gesättigt, wodurch die Anzahl an Arten, die aus dem regionalen Artenbestand einwandern können, limitiert wird. Um Vorhersagen über lokalen Artenreichtum zu machen, ist es daher wichtig, die Skalenabhängigkeit der Effekte des regionalen Artenbestandes zu berücksichtigen. Großgruppen von Pflanzen unterscheiden sich in ihrer Ausbreitungsfähigkeit, ihrem Genfluss, Artbildungsraten und Anpassungen an das Klima. Dementsprechend zeigen die vergleichenden Analysen zwischen taxonomischen Pflanzengruppen deutliche Unterschiede in der Reaktion von Artenreichtum und phylogenetischen Diversitätsmustern auf abiotische Faktoren. Die Arten-Fläche-Beziehung, d.h. die Zunahme von Artendiversität mit zunehmender Fläche, variiert zwischen den Pflanzengruppen. Die Steigung der Arten-Fläche-Beziehung ist für Spermatophyten größer als für Pteridophyten und Bryophyten, wohingegen der y-Achsenabschnitt kleiner ist. Unter der Annahme, dass Merkmale und klimatische Anpassungen innerhalb von taxonomischen Gruppen phylogenetisch konserviert sind, führen die Filterwirkung von Ausbreitungsbarrieren und Umwelteigenschaften sowie in situ Artbildung zu Gemeinschaften eng verwandter Arten (phylogenetic clustering). Die Ergebnisse zeigen, dass physische und bioklimatische Inseleigenschaften, die mit der Filterwirkung und Artbildung in Verbindung stehen, die phylogenetische Struktur von Inselgemeinschaften beeinflussen. Die Stärke und Richtung der Zusammenhänge variieren zwischen taxonomischen Gruppen. Abiotische Faktoren erklären mehr Variation in phylogenetischer Diversität für alle Angiospermen und Palmen als für Farne, was auf Grund höherer Ausbreitungsfähigkeit und größerer Verbreitungsgebiete von Farnen den Erwartungen entspricht. Die abiotische Charakterisierung und Klassifizierung der weltweiten Inseln und die zugehörigen Daten ermöglichen eine integrativere Berücksichtigung von Inseln in der makroökologischen Forschung. In dieser Arbeit präsentiere ich die ersten Vorhersagen globaler Pflanzenartenvielfalt auf Inseln und die ersten Analysen zu unterschiedlichen Diversitätskomponenten (α, β, γ und phylogenetische Diversität) von Inselsystemen und ihren abiotischen Einflussfaktoren auf globalem Maßstab. Ich zeige, dass Zusammenhänge zwischen Umweltfaktoren und Artenzahl sowie phylogenetischen Eigenschaften von Inselgemeinschaften zwischen unterschiedlichen taxonomischen Gruppen in Abhängigkeit ihrer vorwiegenden Ausbreitungs- und Artbildungseigenschaften variieren können. Dies ist eine neue Sichtweise in der makroökologischen Inselforschung, die Rückschlüsse auf die Mechanismen hinter Diversitätsmustern von Pflanzen auf Inseln erlaubt. Ein detailliertes Verständnis davon, wie Diversität unterschiedlicher Pflanzengruppen durch Immigration und Diversifizierung auf Inseln entsteht, dürfte auch das Verständnis globaler Diversitätsmuster im Allgemeinen verbessern.

Page generated in 0.0315 seconds