• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Perfusate Composition (Na+ and Ca2+) on Cardiac Electrical and Mechanical Function in the Isolated Langendorff-Perfused Heart

King, David Ryan 11 February 2021 (has links)
Following the landmark studies on scientific reproducibility, or the lack thereof, by Bayer and Amgen in the past decade, there has been a renewed interest in scientific rigor and reproducibility in both the scientific and public media. In several recent reports, the high attrition rate observed in clinical trials has been attributed to irreproducibility at the preclinical level. Cardiology is no exception to this rule. In our systematic review of the ex vivo Langendorff-perfused heart, we found methods reporting to be sparse at best, specifically as it pertains to documenting the ex vivo perfusate compositions employed in the Langendorff heart. Our lab has demonstrated that variation in perfusate compositions can unmask disease states in genetically modified animals. In this dissertation, we exploit this concept with a therapeutic end-point in mind. We show that perfusate variation, specifically sodium and calcium elevations, can attenuate conduction slowing associated with severe hyperkalemia. Likewise, elevating sodium is capable of sustaining intrinsic rhythm where hearts would otherwise go asystolic. In doing so, elevated sodium prevents repolarization prolongation in these hearts. Together, these studies would suggest that elevating extracellular sodium, and calcium, should be considered as therapeutic targets in the context of conduction defects. However, when considering the heart's primary role as a pump, we found that elevating sodium actually depresses cardiac mechanical function. This is both in a pre- and post-ischemic setting. In short, we show that electrolyte variation may influence both cardiac electrophysiology and contraction; however, an improvement in one does not guarantee an improvement in both. Maintaining proper cardiac physiological function is a complex process that is tightly regulated by the ionic makeup of the extracellular environment. To improve insights from preclinical studies at the clinical level it is paramount that researchers properly document methods so that any significant results may be properly interpreted in clinical trial design. / Doctor of Philosophy / Following the landmark studies on scientific reproducibility, or the lack thereof, by Bayer and Amgen in the past decade, there has been a renewed interest in scientific rigor and reproducibility in both the scientific and public media. In several recent reports, the high attrition rate observed in clinical trials has been attributed to irreproducibility at the preclinical level. Preclinical cardiology is no exception to this rule. In a review of the literature, we found methods reporting in a subfield (ex vivo heart preparations) of preclinical cardiology to be lackluster at best. Specifically, we found wide variation in the salt solutions used to maintain the heart's viability out of body. In our research, we show that even modest changes in salt composition will affect the outcome of preclinical research and, if methodological inconsistency is perpetuated to the clinical level, could affect the outcome of clinical trials. Importantly, this finding also reveals that small changes in salt composition may actually have a therapeutic potential that has been previously underappreciated. While we have made strides in understanding the potential for electrolyte modulation as a therapeutic option it is important to note that the clinical understanding of dynamic electrolyte changes in acute emergent situations is still poorly understood. In order to continue pursuing electrolyte modulation as a therapeutic option it will be important for us to first study and better understand the time course of systemic electrolyte changes that accompany conditions such as out-of-hospital cardiac arrest, acute myocardial infarction, shock, and hypothermia in humans.
2

Effets protecteurs d'un donneur de NO sur la fonction diastolique du coeur défaillant de hamster UM-X7.1

Desjardins, Jean-François January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Characterisation and Application of the Isolated Perfused Murine Heart Model and the Role of Adenosine and Substrate During Ischaemia-Reperfusion

Hack, Benjamin Daniel, n/a January 2005 (has links)
The Langendorff perfused murine heart has become an increasingly important research model in cardiovascular physiology and pharmacology. However, the model remains relatively poorly characterised when compared with the widely employed rat preparation. The purpose of the research within this thesis was initially two-fold: 1) to characterise the functional and substrate-dependent properties of the murine model; and 2) to characterise the relationships between glycolysis, ischaemic tolerance and adenosine-mediated cardioprotection in the mouse. Initial studies, confirmed by simultaneous/subsequent work in other laboratories, revealed the frequent occurrence of regular cyclic oscillations in contractile function and coronary flow in glucose-perfused isovolumically contracting hearts. This phenomenon (labelled 'cycling') was unaltered by inhibition of ?-adrenergic receptors, prostaglandins, and nitric oxide synthase. However, A1/A2 adenosine receptor agonism did abolish the oscillations in flow and reduced contractile oscillations by 50%. Importantly, cycling was eliminated by addition of 50 IU/l insulin to perfusion fluid, or provision of 5 mM pyruvate as a co-substrate with glucose. These data suggest that functional 'cycling' in glucose-perfused murine hearts likely occurs as a result of a mismatch between substrate metabolism (energy supply) and myocardial energy demand. It may be that glycolysis with exogenous glucose is insufficient to ensure appropriate matching of myocardial energy supply and demand. For this reason, it is advisable to employ a co-substrate such as pyruvate in studies of murine hearts. Further studies performed within this thesis generally employ this co-substrate addition. Addition of pyruvate as co-substrate removes 'cycling' but is also known to inhibit/modify glycolysis, which may affect ischaemic tolerance and/or cardioprotection mediated by adenosine. Experiments throughout this thesis demonstrated that pyruvate-perfusion improved tolerance to both ischaemia (delayed time to onset of ischaemic contracture; TOC) and reperfusion (reduced diastolic dysfunction and cell death). The delay in TOC as a result of pyruvate-perfusion also suggests that contracture is not solely influenced by anaerobic glycolysis (as outlined in current paradigms). To test the relevance of glycolysis to ischaemic injury hearts were subjected to various forms of glycolytic inhibition. Glycolysis was inhibited by use of 10 mM pyruvate, (iodoacetic acid) IAA treatment, and glycogen depletion by pre-ischaemic substrate-free perfusion (all groups employing pyruvate as sole-substrate). Each form of glycolytic modification resulted in significant delays in TOC, in complete contrast to findings from other models and species. Glycogen depletion also reduced the peak level of contracture. These findings indicate that the mouse is either unique in terms of substrate metabolism and mechanisms of contracture (an unlikely possibility), or raise serious questions regarding current models of contracture development during ischaemia (theorised to be delayed by prolonging anaerobic glycolysis). Modification of glycolysis also altered post-ischaemic outcome, with pyruvate perfusion and glycogen depletion both enhancing functional recoveries. However, IAA treated hearts, despite near-identical ischaemic tolerance (ie contracture development) to pyruvate-perfused hearts, displayed very poor functional recovery, which was below that for all other groups. These data clearly reveal that blocking glycolysis improves tolerance to ischaemia (as evidenced by reduced contracture), provide evidence of dissociation of ischaemic injury or contracture from post-ischaemic recovery, and confirm the key importance of glycolysis in enhancing recovery from ischaemia. Since tolerance to ischaemia/reperfusion was shown to be glycolysis dependent, and since it has been theorised that adenosine protects hearts through modulating glycolysis, the relationships between glycolytic inhibition and adenosine-mediated cardioprotection was tested. In a number of studies, exogenously applied adenosine was shown to protect both glucose- and pyruvate-perfused hearts (supporting no dependence of adenosinergic protection on glycolysis). However, to more equivocally test the role of glycolysis effects of IAA were studied and were shown to markedly limit protection with adenosine. The effects of adenosine during ischaemia were abolished by IAA treatment, and effects on post-ischaemic recovery were reduced (but not eliminated). Similar results were acquired for protection with endogenous adenosine (using iodotubercidin to block adenosine phosphorylation). Collectively, these data reveal that adenosinergic protection during ischaemia depends entirely upon glycolysis while protection during reperfusion likely involves glycolysis dependent and independent processes. However, glycolysis is required for full recovery of function during reperfusion. Further studies assessed the involvement of glycolysis in cardioprotection afforded by transgenic A1 adenosine receptor (A1AR) overexpression. It was found that pyruvate-perfusion provided the same protection as A1AR overexpression, and the two responses (to pyruvate and A1AR overexpression) were not additive. Thus, it is probable that common mechanisms are targeted in both responses (likely glycolysis). Finally, the effects of adenosine and pyruvate on oxidant injury were studied, testing whether interactions between adenosine and pyruvate observed in prior work within this thesis could be explained by alterations in anti-oxidant responses. It was found that adenosine has quite profound anti-oxidant responses in glucose-perfused hearts, with very selective effects on markers of damage. Pyruvate also had some anti-oxidant effects but interestingly it reduced the anti-oxidant effects of adenosine. In conclusion, the work entailed within this thesis demonstrates that the isolated mouse heart model may possess unique properties and should be further characterised by potential users in order to improve its utility, and the reliability of experimental findings (chiefly when studying ischaemia-reperfusion). Other work within thesis demonstrates that modification of glycolysis is important in dictating recovery from ischaemia-reperfusion, and also impacts on adenosine-mediated protection (principally but not exclusively during ischaemia itself). The manner in which glycolysis is modified and contributes to protection remains unclear.
4

Validação da atividade do eixo intracelular PKCépsilon-ALDH2 como mecanismo-chave na cardioproteção induzida pelo exercício físico. / Intracellular PKCε-ALDH2 axis as a key mechanism in exercise-mediated cardioprotection.

Domingues, Laís Santos 03 May 2018 (has links)
As doenças isquêmicas representam a principal causa de mortalidade e morbidade no mundo. Dessa forma, o melhor entendimento dos sinais intracelulares envolvidos no estabelecimento e propagação do dano induzido pela isquemia-reperfusão (I/R) é essencial para o desenvolvimento de novas estratégias, futuramente utilizadas na prevenção e no tratamento do infarto agudo do miocárdio, acidente vascular cerebral e isquemia renal. O processo de isquemia-reperfusão gera danos irreparáveis aos tecidos acometidos. A reperfusão do tecido afetado, que ficara temporariamente mantido em hipóxia (com baixa tensão de oxigênio), resulta em um brusco aporte de oxigênio (alta tensão de oxigênio) e consequente colapso metabólico, caracterizado pela disfunção mitocondrial associada à elevada produção de radicais livres. Recentemente demonstramos que estímulos cardioprotetores (ex. pré-condicionamento isquêmico e etanol) são acompanhados pela ativação da proteína quinase C isoforma épsilon (PKCε), aumento de sua translocação para a mitocôndria e consequente fosforilação/ativação da enzima mitocondrial aldeído desidrogenase 2 (ALDH2). A ALDH2 é uma enzima chave na proteção contra danos isquêmicos devido a sua capacidade de oxidar aldeídos, como 4-hidroxi-2-nonenal e acetaldeído, produzidos durante estresse oxidativo. Semelhante ao pré-condicionamento isquêmico, o exercício físico (EF) também promove um aumento da tolerância do miocárdio à lesão de isquemia-reperfusão, entretanto os mecanismos celulares envolvidos nessa cardioproteção ainda são pouco compreendidos. No presente projeto de pesquisa buscamos validar o eixo intracelular PKCε-ALDH2 como possível mecanismo cardioprotetor induzido pelo EF frente estresse de isquemia-reperfusão. Inicialmente, utilizando camundongos selvagens, avaliamos se o exercício físico (7 dias consecutivos) modula a PKCε e a ALDH2, e se essa resposta é transiente ou sustentada. Em seguida, por meio da técnica de isquemia-reperfusão ex vivo (Langendorff), avaliamos a participação individual da PKCε e ALDH2 na cardioproteção mediada pelo exercício físico. Nossos resultados mostram que o exercício físico aumenta a expressão da PKCε no cardiomiócito de forma transiente, visto que 24h após a última sessão de exercício físico esse valor foi restabelecido, e a ALDH2 mostrou aumento sustentado em sua atividade, mantida até mesmo 24h após a última sessão de exercício físico. Além disso, sete dias de exercício físico é capaz de proteger o coração da lesão de isquemia e reperfusão. Entretanto, quando foram utilizados inibidores específicos ou animais geneticamente modificados, essa cardioproteção foi perdida. Assim, nossos resultados sugerem um papel importante do eixo PKCε-ALDH2 na cardioproteção induzida pelo exercício físico frente a uma lesão por isquemia/reperfusão. / Ischemic diseases are the leading cause of mortality and morbidity worldwide. Thus, a better understanding of the intracellular signals involved in the establishment and propagation of damage induced by ischemia-reperfusion is essential to the development of new strategies that can be used in the prevention and treatment of myocardial infarction, stroke and renal ischemia. The process known as ischemia-reperfusion (I/R) causes irreparable damage to the affected tissues due to the wide variation in tissue oxygen tension. Reperfusion of the affected tissue, which had been temporarily maintained at hypoxia (low oxygen tension), results in abrupt oxygen supply (high oxygen tension) and consequent metabolic collapse, characterized by mitochondrial dysfunction associated with high production of free radicals. We recently demonstrated that cardioprotective stimuli (i.e. ischemic preconditioning and ethanol) are accompanied by increased translocation of protein kinase C isoform epsilon (PKCε) to the mitochondria and subsequent phosphorylation-activation of mitochondrial aldehyde dehydrogenase enzyme 2 (ALDH2), which has an inverse correlation with myocardial injury. ALDH2 is a key enzyme in the protection against ischemic damage due to its capacity to oxidize aldehydes (i.e. acetaldehyde and 4-hydroxynonenal) produced during oxidative stress. Similar to ischemic preconditioning, exercise promotes increased myocardial tolerance to ischemia-reperfusion injury; however, the cellular mechanisms involved in this process are still poorly understood. We proposed to validate the intracellular PKCε-ALDH2 axis as a possible exercise-mediated cardioprotective mechanism upon ischemia-reperfusion. Firstly, using wild-type mice, we evaluated whether exercise (7 consecutive days) modulates the activity of PKCε and ALDH2 (transient vs. sustained). Then, through the ex vivo ischemia-reperfusion technique (Langendorff), we evaluated the individual participation of PKCε and ALDH2 in exercise-mediated cardioprotection. Our results show that physical exercise increases the cardiomyocyte PKCε levels in a transient way, since this response was reestablished 24h after the last physical exercise session. Moreover, ALDH2 showed a sustained increase in its activity, which was maintained even 24h after the last session. In addition, seven days of physical exercise was able to protect the heart from ischemia and reperfusion injury, whereas this cardioprotection was lost when specific inhibitors or genetically modified animals (PKCε knockout mice and ALDH2 knock-in mice) were used. Thus, our results suggest an important role of the PKCε-ALDH2 axis in the cardioprotection induced by exercise against ischemia/reperfusion injury.
5

Divergent Roles of PI3K and Akt in Rapamycin-induced Cardioprotection against Ischemia-Reperfusion Injury

Desai, Shivani Kirit 01 January 2007 (has links)
Coronary heart disease (CHD) is one of the leading causes of death every year with nearly three-fourths of all deaths caused by the disease. The challenge scientists are facing today is discovering new drugs to protect the heart against cellular damage caused by ischemia-reperfusion injury (I-R injury). Rapamycin is one such drug that has been shown to protect the heart against ischemia-induced cellular injury. Rapamycin(sirolimus) inhibits protein synthesis through inhibition of the mammalian target ofrapamycin (mTOR). This property of rapamycin has led to its current clinical applications in drug-eluting stents and in immunosuppresive treatment to organ transplant patients. The mechanism by which this drug protects against I-R injury is currently unknown. The goal of this study is to elucidate rapamycin's cardioprotective signaling pathway. We hypothesized that upregulation of Akt occurs possibly as part of a positive feedback mechanism following the inhibition of mTOR by rapamycin. Adult male ICRmice were treated with rapamycin (0.25 mg/kg, i.p.), or volume-matched DMSO (solvent for rapamycin), or rapamycin (0.25mg/kg, i.p.) plus wortmannin (WTN, 15µg/kg, i.p.),an inhibitor of phosphatidylinositol 3-kinase, or wortmannin alone (15µg/kg, i.p.). After 30 min of stabilization, the hearts were subjected to 20 minutes of global ischemia and 30 minutes of reperfusion in Langendorff model. In a separate series of experiments mice were either injected with DMSO or rapamycin for 30 minutes, 1 hour, and 2 hours before harvesting the hearts for Western blot analysis of levels of total or phosphorylated Akt at Ser473. Our results showed that rapamycin protected the heart as observed by a reductionin infarct size from 33.8 ± 2.0% in DMSO-treated hearts to 19.3 ± 4.1% in rapamycin-treated hearts; a 43% reduction. This infarct-limiting effect was completely blocked by wortmannin (29.3 ± 4.8%). However, Western blot analysis showed no change in the level of Akt phosphorylation after administration of rapamycin. Our current resultsfurther confirmed rapamycin as a potential cardio-therapeutic drug to limit infarct size,potentially through the PI3K signaling pathway. However, the exact signaling pathway of this protection still remains elusive.
6

Ultrasound Current Source Density Imaging in Live Rabbit Hearts Using Clinical Intracardiac Catheter

Li, Qian January 2015 (has links)
Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO₄, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 ± 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 ± 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation between the recording electrode distance and the measured AE signal amplitude in gel phantoms and excised porcine heart tissue using a clinical intracardiac catheter. Sensitivity of UCSDI with catheter was 4.7 μV/mA (R² = 0.999) in cylindrical gel (0.9% NaCl), and 3.2 μV/mA (R² = 0.92) in porcine heart tissue. The AE signal was detectable more than 25 mm away from the source in cylindrical gel (0.9% NaCl). Effect of transducer properties on UCSDI sensitivity is also investigated using simulation. The optimal ultrasound transducer parameters chosen for cardiac imaging are center frequency = 0.5 MHz and f/number = 1.4. Last but not least, this dissertation shows the result of implementing the optimized ultrasound parameters in live rabbit heart preparation, the comparison of different recording electrode configuration and multichannel UCSDI recording and reconstruction. The AE signal detected using the 0.5 MHz transducer was much stronger (2.99 μV/MPa) than the 1.0 MHz transducer (0.42 μV/MPa). The clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without being too invasive. 3-dimensional cardiac activation maps of the live rabbit heart using only one pair of recording electrodes were also demonstrated for the first time. Cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing were calculated based on the activation maps. The future outlook of this dissertation includes integrating UCSDI with 2-dimensional ultrasound transducer array for fast imaging, and developing a multi-modality catheter with 4-dimensional UCSDI, multi-electrode recording and echocardiography capacity.
7

Cardiac Arrhythmia Termination on the Vascular and Organ Scale

Hornung, Daniel 26 November 2013 (has links)
No description available.
8

Leonurus cardiaca: Untersuchungen zur Wirksamkeit eines pflanzlichen Antiarrhythmikums am isolierten Kaninchenherzen.

Melichar, Kerstin 07 November 2007 (has links) (PDF)
Die Pflanze Leonurus cardiaca wird seit Jahrhunderten in der Volksmedizin als Tee bei nervösen Herzbeschwerden angewendet. Bislang konnten wissenschaftlich keine eindeutigen Beweise erbracht werden, ob das Leonurus-Kraut kardial wirksam ist oder nur einen Placeboeffekt aufweist. In der hier vorliegenden Arbeit wurden aus dem Leonurus-Kraut drei verschiedene Extrakte unterschiedlicher Polarität hergestellt: ein wässriger Soxhlet-Extrakt, ein alkalisierter Chloroformextrakt und ein Ethanol/Wasser-Extrakt. Diese wurden am isolierten Kaninchenherzen an der Langendorff-Apparatur hinsichtlich kardialer Effekte getestet. Mittels eines Multi-Elektroden-Verfahrens konnte mit 256 Elektroden das extrazelluläre epikardiale Potential auf der Herzoberfläche abgegriffen und somit eine Aussage über Erregungsausbreitungsmuster und –geschwindigkeiten getroffen werden. Die weitere Fraktionierung eines kardial wirksamen und therapeutisch möglicherweise einsetzbaren Extrakts richtete sich nach dem Prinzip der Bioassay-guided-Fraktionierung unter Verwendung verschiedener organischer Lösungsmittel. Der Soxhlet-Extrakt zeigte Natrium-, Kalium- und Kalzium-Kanal-blockierende Tendenzen sowie eine potentiell antiarrhythmische Eigenschaft. Die Fraktionen beeinflussten die gleichen elektrophysiologischen und funktionellen Parameter wie der Ausgangsextrakt, zeigten jedoch eine deutlich stärkere Ausprägung auf das Herz. Die Präzipitation der wässrigen Fraktion kann als Schritt zur Trennung von Wirkprinzipien gesehen werden, wobei das Präzipitat alle Parameter irreversibel veränderte und zum Versagen des Herzens führte. Die Methanol-lösliche Fraktion charakterisierte sich dagegen durch eine massive Verlängerung der frequenzkorrigierten Potentialdauer (QTc) bis teilweise zum Herzstillstand, eine Reduktion der linksventrikulären Kontraktionskraft (LVP) sowie eine Erhöhung des Koronarflusses (CF). Auch eine deutliche Verlängerung der PQ-Zeit, des QRS-Komplexes sowie der Gesamtaktivierungszeit wurden festgestellt. Während des wash outs zeigte sich die vollständige Reversibilität der funktionellen und elektrophysiologischen Parameter mit der Wiederherstellung eines stabilen Sinusrhythmus. Zur Abschätzung antiarrhythmischer Wirkungen und zur Erstellung eines mutmaßlichen Wirkprofils wurde die Methanol-lösliche Fraktion in drei Arrhythmiemodellen getestet. β-blockierende Eigenschaften konnten nicht nachgewiesen werden. Mittels elektrischer Stimulation konnte eine Reizschwellenverschiebung um das 10-fache festgestellt werden. Eine Aconitin-bedingte monomorphe ventrikuläre Arryhthmie wurde durch die Methanol-lösliche Fraktion antagonisiert. Damit kann auf eine Natrium-Kanal-blockierende Eigenschaft der Fraktion geschlossen werden. Die Blockade von Gap Junctions wurde nicht festgestellt. In vivo wurden an leicht narkotisierten Kaninchen mögliche zentralnervöse und sedative Eigenschaften mittels EEG untersucht. Dabei wurde ein hoher Kaliumgehalt des Extrakts festgestellt, der in vivo letal war. Zum Ausschluss rein Kalium-bedingter Extraktwirkungen wurde der Kaliumgehalt reduziert und erneut in vivo getestet. Der Übergang von Alpha- zu Deltawellen (Tiefschlaf) im EEG wurde dokumentiert, wodurch eine zentralnervöse Wirkung der Kalium-reduzierten Methanol-löslichen Fraktion vermuten werden kann. Um ausschließlich kardiale Effekt zu untersuchen, wurde die Kalium-reduzierte Methanol-lösliche Fraktion zusätzlich am isolierten Kaninchenherzen geprüft. Die geschwin-digkeitsbestimmenden, kardialen Parameter (BCL, TAT, PQ, QRS) wurden durch die Kalium-reduzierte Methanol-lösliche Fraktion nicht beeinflusst und auch kein Herzstillstand ausgelöst. Die Effekte basieren vermutlich auf einer Kalium- und Kalzium-Kanal-Blockade mit einem hohen antiarrhythmischen Potential. Die Beeinflussung geschwindigkeits-bestimmender Parameter, die Verzögerung der longitudinalen Ausbreitungsgeschwindigkeit bei elektrischer Stimulation und der Aconitin-Antagonismus wurden somit überwiegend durch die hohen Kaliumkonzentrationen der Methanol-löslichen Fraktion bedingt. Die in dieser Arbeit beschriebenen kardialen Wirkungen und antiarrhythmischen Effekte beweisen, dass Leonurus cardiaca tatsächlich herzwirksam ist. Ein Einsatz von Leonurus cardiaca bei Herzrhythmusstörungen bedarf jedoch weiterer Untersuchungen.
9

Ratiometric fluorescence imaging and marker-free motion tracking of Langendorff perfused beating rabbit hearts

Kappadan, Vineesh 14 July 2020 (has links)
No description available.
10

Auswirkungen einer transkoronaren Applikation autologer Knochenmarkstammzellen auf Hämodynamik und Zellmigration im Ischämie-Reperfusions-Modell am Langendorff-Herzen

Vollmer, Konrad 04 December 2017 (has links)
In den letzten Jahren haben regenerative Therapieansätze zur Behandlung der chronischen Herzinsuffizienz mit Einsatz adulter Stammzellen größere Aufmerksamkeit erfahren. Zahlreiche klinische Studien an Patienten mit ischämischer Kardiomyopathie zeigten erfolgversprechende Ergebnisse mit der Transplantation autologer Knochenmarkstammzellen (BMC). Es existieren Hinweise, dass BMC Connexin43 exprimieren könnten. In der hier vorgelegten Arbeit erfolgte in einem Ischämie-Reperfusions-Modell am autonom schlagenden Langendorff-Herzen nach passagerer Ligatur einer Koronarie mit Induktion einer Myokardischämie eine unselektive transkoronare Injektion autologer BMC in der frühen Reperfusionsphase. Zu überprüfen war die Hypothese, dass BMC in dieser Phase der Reperfusion sicher administriert werden können und bereits ein ischämiegetriggertes Homing im Infarktareal zeigen. Zudem sollte überprüft werden, ob c-kit+ (CD117) BMC in der Lage sind Connexin43 zu exprimieren. Additiv wurde am Beispiel von NF-κB postuliert, dass auch die Aktivierung früher Gene einen Einfluss auf das Homing von c-kit+ BMC haben. Die Applikation einer großen Zellzahl (durchschnittlich 1,8 Mio. /g Myokard) mit Infusionsraten von 0,5 - 2,6 Mio. Zellen pro Minute hatte hierbei keinen negativen Einfluss auf Hämodynamik und rhythmogene Stabilität. Akute Myokardischämien traten nicht auf. Der gewählte Applikationsweg und -zeitpunkt führten zu einer quantitativ adäquaten Zellretention. Immunhistologisch ließen sich die Tendenz zum 'Homing' von c-kit+ BMC im ischämischen linksventrikulären Myokard sowie Zeichen der ischämiegetriggerten Extravasation nachweisen. Eine signifikante Expression von Connexin43 an c-kit+ BMC konnte nicht gezeigt werden. Somit kann eine gap-junction-vermittelte Kommunikation zwischen c-kit+ BMC zu diesem Zeitpunkt nicht bestätigt werden. Im direkten Umfeld c-kit+ BMC fand sich keine vermehrte Aktivierung von NF-κB.

Page generated in 0.0709 seconds