• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photo and electroactive cages

Truong, Thi-Kim-Uyen January 1998 (has links)
No description available.
2

Determinação da simetria de coordenação de alguns complexos de lantanídeos por difração de raios-x / Coordination symmetry studies in some lanthanide complex by X-ray diffraction

Santos, Carlos de Oliveira Paiva 16 August 1983 (has links)
lantanídeos, visando a determinação da simetria de coordenação ao redor dos íons e sua comparação com prévias previsões espectroscópicas. As medidas de difração foram realizadas com um difratômetro de quatro círculos de geometria Kappa. Os dados cristalinos relevantes são: [Eu (TMU)6] (AsF6)3, TMU = C5H12N2O. Fórmula química: EuC30H72N12O6As3F18; cela unitária é cúbica, a = 18,000 (3)&#197e V = 5832 (3)޵ grupo espacial: F23 número - 196 da Internacional Tables For X-Ray Crystallography; número de moléculas por cela unitária: Z = 4; coeficiente de absorção de massa para radiação de molibdênio: µ (MoK&#945)=27,4 cm-1; densidade calculada: Dc = 1,60 g.cm-3 Para um cristal de tamanho aproximadamente 0,25 x 0,25 x 0,30mm foram medidas 2309 reflexões. A média das intensidades das reflexões equivalentes por simetria de Laue foi calculada obtendo-se um total de 841 independentes, das quais, apenas 277 resultaram maiores que três vezes o desvio padrão estimado de contagem estatística. A estrutura se mostrou altamente desordenada e o modelo proposto refinou a um fator-R final de 13.8%. Os átomos de európio e arsênio estão localizados em posições especiais de simetria pontual local 23 (T) O Eu3+ está hexacoordenado através dos oxigênios das moléculas de TMU formando um octaedro regular de simetria pontual Oh. A distância európio-oxigênio é de aproximadamente 2,28 &#197. [Ln (H2O)9] (CF3SO3)3, Ln=Nd or Ho. Fórmula química: LnC3H18O18F9S3; cela unitária hexagonal a=13,851 (4)&#197, c=7,460(3)&#197 e V=1240(1) &#1973 para Ln = Nd, e a=13,570 (2)&#197, c=7,577 (1)&#197 e V=1208,5 (9)&#1973 para Ln=Ho; grupo espacial: P63/m número 176 da Internacional Tables For X-Ray Crystalography; número de moléculas por cela unitária: Z=2; coeficiente de absorção de massa para radiação de molibdênio: µ (MoK&#945) = 23,2 cm-1(Nd) e 34,8 cm-1 (ho); densidade calculada: Dc=2,02 g.cm-3 e 2,13 g.cm-3 respectivamente para Ln = Nd e Ho. De um cristal de forma cilíndrica de diâmetro e altura aproximadamente de 0,20 mm foram medidas 2098 reflexões para o complexo de Nd e 2400 para o de Ho. Após o calculo de média das reflexões equivalentes de Laue, obteve-se para o caso de Nd 685 reflexoes independentes das quais 636 com I &#62 3&#963(I) e o fator-R final foi 2,64%. Para o complexo de holmio as figuras foram: 763 reflexões independentes, 676 com I &#62 3&#963(I) e fator-R de 2,18%. Em ambos os casos as estruturas foram resolvidas pelos métodos de Patterson e do átomo pesado. As estruturas se mostraram isomorfas com a única diferença significativa sendo a distância lantanídeo-oxigênio de 2,49 &#197 para Nd e 2,42 para Ho. O íon lantanídeo é nonacoordenado através dos oxigênios das moléculas de água formando um prisma trigonal triencapuçado de simetria pontual cristalografica D3h. Todas as distâncias interatômicas estão dentro da faixa esperada, com exceção das distâncias C-F em ambos os casos que são um pouco curtas (1,31 &#197) / We describe here the X-ray determination of the crystal and molecular structures of three lanthanide complexes. The work is a contribution to the study of the coordination chemistry of lanthanide ions with organic ligands and in particular, it-aims to compare the observed point symmetry of the ion environment with spectroscopic predictions. The diffraction measurements were all performed on a four circle diffractometer of kappa geometry. The relevant crystal data are: Chemical formula: [Eu (TMU)6] (AsF6)3, TMU = C5H12N2O; cubic unit cell a = 18,000 (3)&#197e V = 5832 (3)޵ space group: F23 number 196 from International Tables for X-ray Crystallography; number of molecules per unit cell: Z = 4; mass absorption coefficient for molybdenum radiation: (MoK&#945)=27,4 cm-1; calculated density: Dc = 1,60 g.cm-3. For a crystal of approximately 0.25 x 0.25 x 0.30 mm size, 2309 reflections were measured. After averaging the intensities of the Laue-equivalent reflection, 841 independent reflections were obtained, from which only 277 had intensities greater than three times the respective standard deviations estimated from counting statistics. The structure turn out to be highly disordered and the proposed model refined to a final R-factor of 13.8%. The europium and arsenic atoms are sited on special positions of local point symmetry 23 (T). The Eu3+ is hexacoordinated to six TMU oxygen atoms, forming a regular crystallographic octahedron of point symmetry Oh. The europium oxygen distance is 2.28&#197. [Ln (H2O)9] (CF3SO3)3, Ln=Nd or Ho. Chemical formula: LnC3H18O18F9S3 hexagonal unit a=13,851 (4)&#197, c=7,460(3)&#197 and V=1240(1) &#1973 for Ln = Nd, and a=13,570 (2)&#197, c=7,577 (1)&#197 e V=1208,5 (9)&#1973 for Ln=Ho; spacial group: P63/m number 176 from International Tables for X-ray Crystallography number of molecules per unit cell: Z=2; mass absorption coefficient for molybdenum radiation: &#1810 (MoK&#945) = 23,2 cm-1 for Ln=Nd and 34,8 cm-1 for Ln=Ho; calculated density: Dc=2,02 g.cm-3 e 2,13 g.cm-3 respectively for Nd and Ho. From a cylindrically shapped crystal of approximate diameter and height of 0.20 mm, 2098 reflections for the Nd and 2400 for the Ho complexes were measured. After averaging the intensi ties of the Laue-equivalent reflections we obtain for Nd 685 independent reflections of which 636 with I &#62 3&#963(I) and agreement factor of 2.64%. For the holmium complexes the figures were 763 independent reflections, 676 with I &#62 3&#963(I) and agreement factor equal to 2.18%. In both cases the structures were solved by the heavy-atom Patterson method. The structures turn out to be isomorphous with the only significant difference of the lanthanide oxygen distances which was 2.49&#197 for Nd and 2.42&#197 for Ho. The lanthanide ions are nine-coordinated to the oxygen atom of water molecules, which form a tricapped trigonal prism of crystallographic point symmetry D3h. All interatomic distances lie within the expected normal range except the C-F ones which are somewhat shorter (1,31 &#197)
3

Calixarene supported transition metal clusters

Taylor, Stephanie Merac January 2013 (has links)
This thesis describes a series of calix[n]arene polynuclear transition metal and lanthanide complexes. Calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition metal and lanthanide centres. Surprisingly however, with only a few exceptions, the coordination chemistry of p-tBucalix[ 4]arene (TBC[4]), p-tBu-calix[8]arene (TBC[8]) and p-tBuhomotrioxacalix[ 3]arene (TBOC[3]) with paramagnetic transition metal ions for the purpose of making and studying magnetically interesting molecules is unknown. Chapter two describes the reaction of TBC[4] with manganese salts in the presence of an appropriate base (and in some cases co-ligand) resulting in the formation of a family of calixarene-supported [MnIII 2MnII 2] clusters (1-7) that behave as Single-Molecule Magnets (SMMs). These are: [MnIII 2MnII 2(OH)2(TBC[4])2(DMF)6]·2MeOH (1), [MnIII 2MnII 2(OH)2(TBC[4])2(DMF)4(H2O)2]·4MeOH·2DMF (2), [MnIII 2MnII 2(OH)2(TBC[4])2(DMF)6]·2.8MeOH (3), [MnIII 2MnII 2(OH)2(TBC[4])2(DMF)4(EtOH)(H2O)] (4), [MnIII 2MnII 2(OH)2(TBC[4])2(DMSO)6]·2MeOH·2DMSO (5) , [MnIII 2MnII 2(OH)2(TBC[4])2(DMSO)6] (6) and [MnIII 2MnII 2(OH)2(C[4])2(MeOH)6]·4MeOH (7). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs. Chapter three describes how the combination of complementary cluster ligands; sodium phenylphosphinate and the N,O-chelate 2-(hydroxy-methyl)pyridine (hmpH) with TBC[4] results in the formation of two new calixarene-supported clusters. This being an unusual [MnIIIMnII]2 dimer of dimers [MnIIIMnII(O2P(H)Ph)(DMF)2(MeOH)2]2 (8) and a ferromagnetic [Mn5] cage that displays the characteristic bonding modes of each support [MnIII 3MnII 2(OH)2(TBC[4])2(hmp)2(DMF)6](TBC[4]-H)·xDMF ·xH2O (9). Chapter four details how using oxacalix[3]arenes can tune the nature of the metal binding site, by introduction of ≥ 1 ethereal bridge. This results in Mn(II) rather than Mn(III) bonding in the phenolic pocket, and that these components self-assemble with additional Mn(II) and Mn(III) ions to form a [Mn10] supertetrahedron with an unusual oxidation state distribution, [MnII 6MnIII 4O4(TBOC[3])4(Cl)4(DMF)3]∙3.3H2O ∙ 1.5DMF (10). Chapter five introduces a family of lanthanide complexes formed using TBC[8]. Variation in the experimental conditions employed in the reaction of TBC[8] with lanthanide salts (LnX3) provides access to Ln1, Ln2, Ln4, Ln5, Ln6, Ln7 and Ln8 complexes, [Gd(TBC[8]-2H)Cl(DMSO)4]·MeCN·H2O·(DMSO)2·hex (11), [CeIV 4(TBC[8]-6H)2(μ3- O)2(DMF)4]·(DMF)5·hex·MeCN (12), [TbIII 5(TBC[8]-5H)(μ4-O)(μ3- OH)4Cl(DMSO)8(H2O)3]Cl3·(DMSO)2(hex)2 (13), [CeIV 6(TBC[8]-6H)2(μ4-O)2(μ2-OMe)4(μ2- O)2(DMF)4]·(DMF)6·hex (14), [Dy7(TBC[8]-7H)(TBC[8]-6H)(μ4-O)2(μ3-OH)2(μ2- OH)2(DMF)9]·(DMF)3 (15) and [Gd8(TBC[8]-7H)2(μ4-CO3)2(μ5-CO3)2(μ2-HCO2)2(DMF)8] (16), with all polymetallic clusters containing the common bi-nuclear lanthanide fragment. Closer inspection of the structures of the polymetallic clusters reveals that all but one (Ln8) are in fact based on metal octahedra or the building blocks of octahedra.
4

Determinação da simetria de coordenação de alguns complexos de lantanídeos por difração de raios-x / Coordination symmetry studies in some lanthanide complex by X-ray diffraction

Carlos de Oliveira Paiva Santos 16 August 1983 (has links)
lantanídeos, visando a determinação da simetria de coordenação ao redor dos íons e sua comparação com prévias previsões espectroscópicas. As medidas de difração foram realizadas com um difratômetro de quatro círculos de geometria Kappa. Os dados cristalinos relevantes são: [Eu (TMU)6] (AsF6)3, TMU = C5H12N2O. Fórmula química: EuC30H72N12O6As3F18; cela unitária é cúbica, a = 18,000 (3)&#197e V = 5832 (3)޵ grupo espacial: F23 número - 196 da Internacional Tables For X-Ray Crystallography; número de moléculas por cela unitária: Z = 4; coeficiente de absorção de massa para radiação de molibdênio: µ (MoK&#945)=27,4 cm-1; densidade calculada: Dc = 1,60 g.cm-3 Para um cristal de tamanho aproximadamente 0,25 x 0,25 x 0,30mm foram medidas 2309 reflexões. A média das intensidades das reflexões equivalentes por simetria de Laue foi calculada obtendo-se um total de 841 independentes, das quais, apenas 277 resultaram maiores que três vezes o desvio padrão estimado de contagem estatística. A estrutura se mostrou altamente desordenada e o modelo proposto refinou a um fator-R final de 13.8%. Os átomos de európio e arsênio estão localizados em posições especiais de simetria pontual local 23 (T) O Eu3+ está hexacoordenado através dos oxigênios das moléculas de TMU formando um octaedro regular de simetria pontual Oh. A distância európio-oxigênio é de aproximadamente 2,28 &#197. [Ln (H2O)9] (CF3SO3)3, Ln=Nd or Ho. Fórmula química: LnC3H18O18F9S3; cela unitária hexagonal a=13,851 (4)&#197, c=7,460(3)&#197 e V=1240(1) &#1973 para Ln = Nd, e a=13,570 (2)&#197, c=7,577 (1)&#197 e V=1208,5 (9)&#1973 para Ln=Ho; grupo espacial: P63/m número 176 da Internacional Tables For X-Ray Crystalography; número de moléculas por cela unitária: Z=2; coeficiente de absorção de massa para radiação de molibdênio: µ (MoK&#945) = 23,2 cm-1(Nd) e 34,8 cm-1 (ho); densidade calculada: Dc=2,02 g.cm-3 e 2,13 g.cm-3 respectivamente para Ln = Nd e Ho. De um cristal de forma cilíndrica de diâmetro e altura aproximadamente de 0,20 mm foram medidas 2098 reflexões para o complexo de Nd e 2400 para o de Ho. Após o calculo de média das reflexões equivalentes de Laue, obteve-se para o caso de Nd 685 reflexoes independentes das quais 636 com I &#62 3&#963(I) e o fator-R final foi 2,64%. Para o complexo de holmio as figuras foram: 763 reflexões independentes, 676 com I &#62 3&#963(I) e fator-R de 2,18%. Em ambos os casos as estruturas foram resolvidas pelos métodos de Patterson e do átomo pesado. As estruturas se mostraram isomorfas com a única diferença significativa sendo a distância lantanídeo-oxigênio de 2,49 &#197 para Nd e 2,42 para Ho. O íon lantanídeo é nonacoordenado através dos oxigênios das moléculas de água formando um prisma trigonal triencapuçado de simetria pontual cristalografica D3h. Todas as distâncias interatômicas estão dentro da faixa esperada, com exceção das distâncias C-F em ambos os casos que são um pouco curtas (1,31 &#197) / We describe here the X-ray determination of the crystal and molecular structures of three lanthanide complexes. The work is a contribution to the study of the coordination chemistry of lanthanide ions with organic ligands and in particular, it-aims to compare the observed point symmetry of the ion environment with spectroscopic predictions. The diffraction measurements were all performed on a four circle diffractometer of kappa geometry. The relevant crystal data are: Chemical formula: [Eu (TMU)6] (AsF6)3, TMU = C5H12N2O; cubic unit cell a = 18,000 (3)&#197e V = 5832 (3)޵ space group: F23 number 196 from International Tables for X-ray Crystallography; number of molecules per unit cell: Z = 4; mass absorption coefficient for molybdenum radiation: (MoK&#945)=27,4 cm-1; calculated density: Dc = 1,60 g.cm-3. For a crystal of approximately 0.25 x 0.25 x 0.30 mm size, 2309 reflections were measured. After averaging the intensities of the Laue-equivalent reflection, 841 independent reflections were obtained, from which only 277 had intensities greater than three times the respective standard deviations estimated from counting statistics. The structure turn out to be highly disordered and the proposed model refined to a final R-factor of 13.8%. The europium and arsenic atoms are sited on special positions of local point symmetry 23 (T). The Eu3+ is hexacoordinated to six TMU oxygen atoms, forming a regular crystallographic octahedron of point symmetry Oh. The europium oxygen distance is 2.28&#197. [Ln (H2O)9] (CF3SO3)3, Ln=Nd or Ho. Chemical formula: LnC3H18O18F9S3 hexagonal unit a=13,851 (4)&#197, c=7,460(3)&#197 and V=1240(1) &#1973 for Ln = Nd, and a=13,570 (2)&#197, c=7,577 (1)&#197 e V=1208,5 (9)&#1973 for Ln=Ho; spacial group: P63/m number 176 from International Tables for X-ray Crystallography number of molecules per unit cell: Z=2; mass absorption coefficient for molybdenum radiation: &#1810 (MoK&#945) = 23,2 cm-1 for Ln=Nd and 34,8 cm-1 for Ln=Ho; calculated density: Dc=2,02 g.cm-3 e 2,13 g.cm-3 respectively for Nd and Ho. From a cylindrically shapped crystal of approximate diameter and height of 0.20 mm, 2098 reflections for the Nd and 2400 for the Ho complexes were measured. After averaging the intensi ties of the Laue-equivalent reflections we obtain for Nd 685 independent reflections of which 636 with I &#62 3&#963(I) and agreement factor of 2.64%. For the holmium complexes the figures were 763 independent reflections, 676 with I &#62 3&#963(I) and agreement factor equal to 2.18%. In both cases the structures were solved by the heavy-atom Patterson method. The structures turn out to be isomorphous with the only significant difference of the lanthanide oxygen distances which was 2.49&#197 for Nd and 2.42&#197 for Ho. The lanthanide ions are nine-coordinated to the oxygen atom of water molecules, which form a tricapped trigonal prism of crystallographic point symmetry D3h. All interatomic distances lie within the expected normal range except the C-F ones which are somewhat shorter (1,31 &#197)
5

Využití částic oxidu titaničitého s fosfonáty v medicíně / Titaniun Dioxide - Phosphonate Assemblies as Medical Nanoprobes

Řehoř, Ivan January 2011 (has links)
Titanium Dioxide - Phosphonate Assemblies as Medical Nanoprobes Ivan Řehoř PhD. Thesis Abstract: Multimodal imaging-therapeutic nanoprobe TiO2@RhdGd was prepared and successfully used for in- vitro and in-vivo cell tracking as well as for killing of cancer cells in-vitro. TiO2 nanoparticles, 12 nm in diameter, were used as a core for phosphonic acid modified functionalities, responsible for contrast in MRI and optical imaging. The phosphonic acid derivatives, used for surface modification, allows for grafting extraordinarily high loads of irreversibly adsorbed molecules of both types in one step. The prepared probe shows very high 1 H r1 relaxivity value as well as relaxivity density value, both crucial parameters for its use in MRI. The presence of fluorescent dye in its structure allows for its visualization by means of fluorescence microscopy. The applicability of the probe was studied, using three living systems - mesenchymal stem cells, cancer HeLa cells and T-lymphocytes. The probe did not exhibit toxicity in any of these systems and its long time storage in a lysosomal compartment was confirmed. Labeled cells were successfully visualized in-vitro by means of fluorescence microscopy and MRI. Consequent visualization of labeled cells in-vivo by means of fluorescence microscopy was also achieved....
6

Nouveaux développements en biologie structurale basés sur des complexes de lanthanide / New developments in structural biology based on lanthanide complexes

Engilberge, Sylvain 19 December 2017 (has links)
Depuis les premières structures de protéines déterminées dans les années 1950, la cristallographie aux rayons X s’est imposée comme une méthode de choix pour l’obtention de données structurales à l’échelle atomique. Malgré les progrès technologiques qui ont révolutionné cette méthode (sources synchrotron, détecteurs pixel, programmes informatiques performants), l’obtention d’une carte de densité électronique permettant de modéliser la structure d’une macromolécule demeure toujours limitée par deux goulots d’étranglement qui sont, l’obtention de cristaux de la macromolécule d’intérêt et la résolution du problème des phases inhérent à l’enregistrement des données de diffraction.Cette thèse présente un nouveau complexe de lanthanide appelé « crystallophore » (Tb-Xo4). Cette molécule a été développé en collaboration avec Olivier Maury et François Riobé du laboratoire de chimie Matériaux Fonctionnels et Photonique (ENS –Lyon). La conception de ce nouveau complexe est basée sur quinze années de développement dans le domaine de la biologie structurale. Cette thèse présente les effets uniques induits par de Tb-Xo4 sur la cristallisation et sur la détermination des structures de macromolécules biologiques. L’ajout de Tb-Xo4 au cours de la cristallisation permet d’induire un nombre important de conditions de cristallisation exploitables dont certaines sont propres à la présence du crystallophore. L’analyse des structures atomiques de différentes protéines co-cristallisées en présence de Tb-Xo4 a permis à la fois de mettre en avant le pouvoir phasant élevé de Tb-Xo4 mais également de décrire finement l’interaction supramoléculaire du complexe avec la surface des macromolécules. Ce travail a conduit à la mise en place de protocoles de cristallisation et de phasage des macromolécules biologique assistés par Tb-Xo4. Sur la base de la compréhension du mode d’interaction de ce nouveau composé, cette thèse aboutit à la proposition d’un modèle expliquant les propriétés uniques de ce nouveau complexe de lanthanide. / Since the first protein structure determined in the 1950s, X-ray crystallography emerged as a method of choice to obtain structural data at atomic resolution. Despite technological advances such as new synchrotron sources, hybrid pixel detectors, and high-performance softwares, obtaining an electron density map of a biological macromolecule is always limited by two major bottlenecks namely, producing high quality single crystals and solving the phase problem.This thesis presents a new lanthanide complex called “Crystallophore” (Tb-Xo4). This compound has been developed in collaboration with Olivier Maury and François Riobé of the Laboratoire de chimie Matériaux Fonctionnels et Photonique (ENS –Lyon). The design of this new complex is based on fifteen years of development in the field of structural biology. This thesis highlights the effects of Tb-Xo4 on the crystallisation and the structure determination of biological macromolecules. Indeed, the addition of Tb-Xo4 to a protein solution induces a large number of new and unique crystallization conditions. The analysis of the structures of several proteins co-crystallized with Tb-Xo4 allowed both, to highlight the high phasing power of Tb-Xo4 but also to describe finely the supramolecular interaction of the complex with the macromolecules. This work led to protocols dedicated to crystallization and phasing assisted with Tb-Xo4. Finally, this thesis leads to a model explaining the unique properties of this new lanthanide complex.
7

Electrochemical studies of monosubstituted squarate ligands and its transition metal and lanthanide complexes.

Mohamed, Nuralli. January 2008 (has links)
<p>The study introduces and puts forward Sector Policing as a model to expand community Policing and to broaden the scope of crime prevention. It also demonstrates how Sector Policing can be utilised to decentralise policing and deepen community participation.</p>
8

Electrochemical studies of monosubstituted squarate ligands and its transition metal and lanthanide complexes.

Mohamed, Nuralli. January 2008 (has links)
<p>The study introduces and puts forward Sector Policing as a model to expand community Policing and to broaden the scope of crime prevention. It also demonstrates how Sector Policing can be utilised to decentralise policing and deepen community participation.</p>
9

Electrochemical studies of monosubstituted squarate ligands and its transition metal and lanthanide complexes

Mohamed, Nuralli January 2008 (has links)
Magister Scientiae - MSc / The study introduces and puts forward Sector Policing as a model to expand community Policing and to broaden the scope of crime prevention. It also demonstrates how Sector Policing can be utilised to decentralise policing and deepen community participation. / South Africa
10

Investigating and Enhancing Spin Reversal Barriers in Dinuclear 4f Single-Molecule Magnets and the Ultimate Shift to Mononuclear 3d Complexes

Habib, Fatemah January 2015 (has links)
In order for molecular magnetic materials to become applicable, they must retain their magnetisation at reasonable temperatures, which can be achieved with high energy barriers for spin reversal and high blocking temperatures. In the field of Single-Molecule Magnets (SMMs), over the last decade, the main focus has shifted from large spin complexes to highly anisotropic systems which have displayed record energy barriers. There are two main methods of increasing magnetic anisotropy in a complex: i) Choosing a metal ion that boasts high magnetic anisotropy then coupling two such ions through magnetic interactions to induce large global anisotropy, and ii) maintain a low spin or use a mononuclear complex while minimising quantum tunnelling of the magnetisation by controlling the geometric features of the metal ion. Both strategies are equally valid and have been explored in this thesis using dinuclear lanthanide as well as mononuclear 3d complexes. In the pursuit of high-barrier SMMs via alignment of anisotropy axes, two dinuclear, quadruple-stranded helicates and one mesocate were isolated and are described in detail herein, both structurally and magnetically. Furthermore, theoretical calculations have been performed to determine the energies of Kramers doublets on each DyIII centre to derive magneto-structural correlations. To induce magnetic interactions between DyIII ions, a centrosymmetric dinuclear SMM was synthesised. Investigation of the crucial DyIII…DyIII interaction as well as its effect on the quantum tunnelling of the magnetisation has been carried out using ab initio calculations and magnetic dilution studies. Using the same system, a method of greatly enhancing the energy barriers in SMMs has been developed. It involves modifying the coordinating ligands to include electron withdrawing groups in order to yield more anisotropic metal ions. The energy barrier for spin reversal has been increased 7-fold in one case. While lanthanide chemistry has proven to be quite versatile and promising, a new branch of nanomagnets is currently being pursued: mononuclear 3d complexes as SMMs. The advantages of 3d metals include high anisotropy per ion, low spin (as anisotropy decreases with increasing spin), well-understood electronic structures and clear correlations between geometry and magnetic anisotropy. The structural and magnetic properties of three complexes based on CoII and terpyridine ligands as well as a seven-coordinate CoII complex with positive anisotropy are discussed at length. The unique slow relaxation dynamics and spin crossover behaviour has been followed using DFT and ab initio calculations, as well as EPR and magnetic dilution studies. Overall, this thesis describes the efforts taken to synthesise high-barrier nanomagnets through understanding the origins and mechanisms of slow magnetic relaxation in both lanthanide and 3d metal complexes.

Page generated in 0.0974 seconds