• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 61
  • 30
  • 10
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 292
  • 78
  • 50
  • 50
  • 47
  • 46
  • 41
  • 39
  • 38
  • 35
  • 33
  • 30
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

On generalized trigonometric functions

Chen, Hui-yu 25 June 2010 (has links)
The function $sin x$ as one of the six trigonometric functions is fundamental in nearly every branch of mathematics, and its applications. In this thesis, we study an integral equation related to that of $sin x$: $mbox{~for~}xin[-frac{hat{pi}_{p}}{2},~frac{hat{pi}_{p}}{2}] mbox{~and~} p>1$ $$x=int_0^{S_{p}(x)}(1-|t|^{p})^{-frac{1}{p}}dt.$$ Here $hat{pi}_{p}=frac{2pi}{psin(frac{pi}{p})}=2int_0^1(1-t^{p})^{-frac{1}{p}}dt.$ We find that the function $S_{p}(x)$ is well defined. Its properties are also similar to those of $sin x$ : differentiation, identities, periodicity, asymptotic expansions, $cdots$, etc. For example, we have $$|S_{p}(x)|^{p}+|S'_{p}(x)|^{p}=1mbox{~~and~~}frac{d}{dx}(|S'_{p}(x)|^{p-2}S'_{p}(x))=-(p-1)|S_{p}(x)|^{p-2}S_{p}(x).$$ We call $S_{p}(x)$ the generalized sine function. Similarly, we define the generalized cosine function $C_{p}(x)$ by $|x|=int_{C_{p}(x)}^{1}(1- t^{p})^{-frac{1}{p}}dt$ for $xin[-frac{hat{pi}_{p}}{2}$,~$frac{hat{pi}_{p}}{2}]$ and derive its properties. Thus we obtain two sets of trigonometric functions: egin{itemize} item[(i)]$~S_{p}(x),~ S'_{p}(x),~ T_{p}(x)=frac{S_{p}(x)}{S'_{p}(x)},~RT_{p}(x)=frac{S'_{p}(x)}{S_{p}(x)},~ SE_{p}(x)=frac{1}{S'_{p}(x)},~ RS_{p}(x)=frac{1}{S_{p}(x)}~;$ item[(ii)]$~C_{p}(x),~ C'_{p}(x),~RCT_{p}(x)=-frac{C'_{p}(x)}{C_{p}(x)},~ CT_{p}(x)=-frac{C_{p}(x)}{C'_{p}(x)},~RC_{p}(x)=frac{1}{C_{p}(x)},~ CS_{p}(x)=-frac{1}{C'_{p}(x)}mbox{~¡C~}$ end{itemize}These two sets of functions have similar differentiation formulas, identities and periodic properties as the classical trigonometric functions. They coincide when $p=2$. Their graphs and asymptotic expansions are also interesting. Through this study, we understand more about the theoretical framework of trigonometric functions.
52

On the spectrum of the Dirichlet Laplacian and other elliptic operators /

Hermi, Lotfi, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 162-169). Also available on the Internet.
53

On the spectrum of the Dirichlet Laplacian and other elliptic operators

Hermi, Lotfi, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 162-169). Also available on the Internet.
54

Random homogenization of p-Laplacian with obstacles on perforated domain and related topics

Tang, Lan, 1980- 09 June 2011 (has links)
Abstract not available. / text
55

Spectral theory of laplace-beltrami operators with periodic metrics

Green, Edward L. 08 1900 (has links)
No description available.
56

An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalue /

Haile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
57

An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalue

Haile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
58

A numerical computation of eigenfunctions for the Kusuoka Laplacian on the Sierpinski gasket

Alvarez, Vicente. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 92-93). Issued in print and online. Available via ProQuest Digital Dissertations.
59

Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian

Yildirim Yolcu, Selma. January 2009 (has links)
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2010. / Committee Chair: Harrell, Evans; Committee Member: Chow, Shui-Nee; Committee Member: Geronimo, Jeffrey; Committee Member: Kennedy, Brian; Committee Member: Loss, Michael. Part of the SMARTech Electronic Thesis and Dissertation Collection.
60

Das Spektrum von Dirac-Operatoren

Bär, Christian. January 1991 (has links)
Thesis (Doctoral)--Universität Bonn, 1990. / Includes bibliographical references.

Page generated in 0.0497 seconds