Spelling suggestions: "subject:"laplace""
51 |
On generalized trigonometric functionsChen, Hui-yu 25 June 2010 (has links)
The function $sin x$ as one of the six trigonometric functions is
fundamental in nearly every branch of mathematics, and its
applications. In this thesis, we study an integral equation related
to that of $sin x$:
$mbox{~for~}xin[-frac{hat{pi}_{p}}{2},~frac{hat{pi}_{p}}{2}]
mbox{~and~} p>1$
$$x=int_0^{S_{p}(x)}(1-|t|^{p})^{-frac{1}{p}}dt.$$ Here $hat{pi}_{p}=frac{2pi}{psin(frac{pi}{p})}=2int_0^1(1-t^{p})^{-frac{1}{p}}dt.$
We find that the function $S_{p}(x)$ is well defined. Its properties
are also similar to those of $sin x$ : differentiation, identities,
periodicity, asymptotic expansions, $cdots$, etc. For example, we
have
$$|S_{p}(x)|^{p}+|S'_{p}(x)|^{p}=1mbox{~~and~~}frac{d}{dx}(|S'_{p}(x)|^{p-2}S'_{p}(x))=-(p-1)|S_{p}(x)|^{p-2}S_{p}(x).$$
We call $S_{p}(x)$ the generalized sine function. Similarly, we
define the generalized cosine function $C_{p}(x)$ by
$|x|=int_{C_{p}(x)}^{1}(1- t^{p})^{-frac{1}{p}}dt$ for
$xin[-frac{hat{pi}_{p}}{2}$,~$frac{hat{pi}_{p}}{2}]$ and
derive its properties. Thus we obtain two sets of trigonometric
functions: egin{itemize}
item[(i)]$~S_{p}(x),~ S'_{p}(x),~
T_{p}(x)=frac{S_{p}(x)}{S'_{p}(x)},~RT_{p}(x)=frac{S'_{p}(x)}{S_{p}(x)},~
SE_{p}(x)=frac{1}{S'_{p}(x)},~ RS_{p}(x)=frac{1}{S_{p}(x)}~;$
item[(ii)]$~C_{p}(x),~
C'_{p}(x),~RCT_{p}(x)=-frac{C'_{p}(x)}{C_{p}(x)},~
CT_{p}(x)=-frac{C_{p}(x)}{C'_{p}(x)},~RC_{p}(x)=frac{1}{C_{p}(x)},~
CS_{p}(x)=-frac{1}{C'_{p}(x)}mbox{~¡C~}$
end{itemize}These two sets of functions
have similar differentiation formulas, identities and periodic
properties as the classical trigonometric functions. They coincide
when $p=2$.
Their graphs and asymptotic expansions are also interesting. Through this study, we understand more about the theoretical framework of trigonometric functions.
|
52 |
On the spectrum of the Dirichlet Laplacian and other elliptic operators /Hermi, Lotfi, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 162-169). Also available on the Internet.
|
53 |
On the spectrum of the Dirichlet Laplacian and other elliptic operatorsHermi, Lotfi, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 162-169). Also available on the Internet.
|
54 |
Random homogenization of p-Laplacian with obstacles on perforated domain and related topicsTang, Lan, 1980- 09 June 2011 (has links)
Abstract not available. / text
|
55 |
Spectral theory of laplace-beltrami operators with periodic metricsGreen, Edward L. 08 1900 (has links)
No description available.
|
56 |
An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalue /Haile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
|
57 |
An upper bound for the second eigenvalue of the Dirichlet Schrödinger operator with fixed first eigenvalueHaile, Craig Lee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 76-79). Also available on the Internet.
|
58 |
A numerical computation of eigenfunctions for the Kusuoka Laplacian on the Sierpinski gasketAlvarez, Vicente. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 92-93). Issued in print and online. Available via ProQuest Digital Dissertations.
|
59 |
Eigenvalue inequalities for relativistic Hamiltonians and fractional LaplacianYildirim Yolcu, Selma. January 2009 (has links)
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2010. / Committee Chair: Harrell, Evans; Committee Member: Chow, Shui-Nee; Committee Member: Geronimo, Jeffrey; Committee Member: Kennedy, Brian; Committee Member: Loss, Michael. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
60 |
Das Spektrum von Dirac-OperatorenBär, Christian. January 1991 (has links)
Thesis (Doctoral)--Universität Bonn, 1990. / Includes bibliographical references.
|
Page generated in 0.0497 seconds