• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison study on graph sampling algorithms for interactive visualizations of large-scale networks

Voroshilova, Alexandra January 2019 (has links)
Networks are present in computer science, sociology, biology, and neuroscience as well as in applied fields such as transportation, communication, medical industries. The growing volumes of data collection are pushing scalability and performance requirements on graph algorithms, and at the same time, a need for a deeper understanding of these structures through visualization arises. Network diagrams or graph drawings can facilitate the understanding of data, making intuitive the identification of the largest clusters, the number of connected components, the overall structure, and detecting anomalies, which is not achievable through textual or matrix representations. The aim of this study was to evaluate approaches that would enable visualization of a large scale peer-to-peer video live streaming networks. The visualization of such large scale graphs has technical limitations which can be overcome by filtering important structural data from the networks. In this study, four sampling algorithms for graph reduction were applied to large overlay peer-to-peer network graphs and compared. The four algorithms cover different approaches: selecting links with the highest weight, selecting nodes with the highest cumulative weight, using betweenness centrality metrics, and constructing a focus-based tree. Through the evaluation process, it was discovered that the algorithm based on betweenness centrality approximation offers the best results. Finally, for each of the algorithms in comparison, their resulting sampled graphs were visualized using a forcedirected layout with a 2-step loading approach to depict their effect on the representation of the graphs. / Nätverk återfinns inom datavetenskap, sociologi, biologi och neurovetenskap samt inom tillämpade områden så som transport, kommunikation och inom medicinindustrin. Den växande mängden datainsamling pressar skalbarheten och prestandakraven på grafalgoritmer, samtidigt som det uppstår ett behov av en djupare förståelse av dessa strukturer genom visualisering. Nätverksdiagram eller grafritningar kan underlätta förståelsen av data, identifiera de största grupperna, ett antal anslutna komponenter, visa en övergripande struktur och upptäcka avvikelser, något som inte kan uppnås med texteller matrisrepresentationer. Syftet med denna studie var att utvärdera tillvägagångssätt som kunde möjliggöra visualisering av ett omfattande P2P (peer-to-peer) livestreamingnätverk. Visualiseringen av större grafer har tekniska begränsningar, något som kan lösas genom att samla viktiga strukturella data från nätverken. I den här studien applicerades fyra provtagningsalgoritmer för grafreduktion på stora överlagringar av P2P-nätverksgrafer för att sedan jämföras. De fyra algoritmerna är baserade på val av länkar med högsta vikt, av nodar med högsta kumulativa vikt, betweenness-centralitetsvärden för att konstruera ett fokusbaserat träd som har de längsta vägarna uteslutna. Under utvärderingsprocessen upptäcktes det att algoritmen baserad på betweenness-centralitetstillnärmning visade de bästa resultaten. Dessutom, för varje algoritm i jämförelsen, visualiserades deras slutliga samplade grafer genom att använda en kraftstyrd layout med ett 2-stegs laddningsinfart.
2

MINING USER ACCESS PATTERNSFROM NETWORK FLOW ON THE INTERNET

Chang, Shih-Ta 18 July 2000 (has links)
This thesis focuses on mining user access patterns from netflow database collected from the core router of a regional network center. We use the attributed relational graph representation to formulate user access patterns on the Internet, and then propose a procedure to generalize common connection patterns and detect deviation patterns with such methods as large graph generalization, error correcting graph matching, frontier identification and pattern base recognition. The major contributions of this thesis are on represeting the network connection with attributed relational graph and developing data mining tehcniques for identifying access paterns and detecting deviation. The results can be used for better managing regional network in order to improve user satification in using regional netwrok netwrok services.
3

Graph Partitioning Algorithms for Minimizing Inter-node Communication on a Distributed System

Gadde, Srimanth January 2013 (has links)
No description available.

Page generated in 0.052 seconds