1 |
Engineering of Temperature Profiles for Location-Specific Control of Material Micro-Structure in Laser Powder Bed Fusion Additive ManufacturingLewandowski, George 15 June 2020 (has links)
No description available.
|
2 |
Improving Fatigue Life of LENS Deposited Ti-6Al-4V through Microstructure and Process ControlPrabhu, Avinash W. 02 June 2014 (has links)
No description available.
|
3 |
Microstructural Characterization of LENS<sup>TM</sup> Ti-6Al-4V: Investigating the Effects of Process Variables Across Multiple Deposit GeometriesDavidson, Laura Christine January 2018 (has links)
No description available.
|
4 |
Laser Additive Manufacturing of Magnetic MaterialsMikler, Calvin V. 08 1900 (has links)
A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. This shift in phase stability subsequently affected the magnetic properties, specifically saturation magnetization. Ni-Fe-Mo and Ni-Fe-V permalloys were deposited from an elemental blend of powders as well. Both systems exhibited featureless microstructures dominated by an fcc phase. Magnetic measurements yielded saturation magnetizations on par with conventionally processed permalloys, however coercivities were significantly larger; this difference is attributed to microstructural defects that occur during the additive manufacturing process.
|
5 |
Simulation of Laser Additive Manufacturing and its ApplicationsLee, Yousub January 2015 (has links)
No description available.
|
6 |
Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718Makiewicz, Kurt Timothy 09 August 2013 (has links)
No description available.
|
7 |
Experimental study of double-pulse laser micro sintering, ultrasound-assisted water-confined laser micromachining and laser-induced plasmaWeidong Liu (15360391) 29 April 2023 (has links)
<p>This dissertation presents research work related to laser micro sintering, laser micro machining and laser-induced plasma. Firstly, we present extensive experimental studies of double-pulse laser micro sintering (DP-LMS), which typically utilizes the high pressure generated by laser-induced plasma over the powder bed surface to promote molten flow and enhance densification. Chapter 2 shows a single-track experimental study of the DP-LMS process using cobalt powder. The related fundamental mechanisms and effects of different laser parameters on the sintering results are analyzed with the help of <em>in-situ</em> time-resolved temperature measurements. Chapter 3 shows a multi-track experimental study of the DP-LMS process using iron powder. The sintered materials are characterized via the top surface porosity, elemental composition, grain microstructure, nanohardness and metal phase. Three strategic guidelines for laser parameter selection are summarized in the end. Chapter 4 shows time-resolved imaging and OES measurements for plasma induced during DP-LMS. The plasma temperature and free electron number density are deduced by its optical emission spectra (OES). These three chapters have clearly demonstrated DP-LMS can produce much more continuous and densified materials than LMS only using the sintering or pressing laser pulses.</p>
<p><br></p>
<p>Then, we present laser micro grooving of silicon carbide (SiC) in Chapter 5 by ultrasound-assisted water-confined laser micromachining (UWLM), in comparison with laser machining in water without ultrasound and laser machining in air. UWLM applies <em>in-situ</em> ultrasound to the water-immersed workpiece surface to improve the machining quality and/or productivity. Time-resolved water pressure measurements are carried out to help analyze relevant mechanisms. It has been demonstrated UWLM can be a competitive approach to produce high-quality micro grooves on SiC. The crack problem appears to be effectively solved using a high pulse repetition rate.</p>
<p><br></p>
<p>Finally, we report a double-front phenomenon for plasma induced by high-intensity nanosecond laser ablation of aluminum in Chapter 6. An additional plasma front is observed via an intensified CCD (ICCD) camera, which propagates very fast at the beginning but stops propagating soon after the laser pulse mostly ends. Its formation could be caused by the inverse bremsstrahlung absorption of laser energy by the ionized ambient gas. Three possible mechanisms on how the ambient gas breakdown is initiated are proposed. </p>
|
8 |
Design and LENS® Fabrication of Bi-metallic Cu-H13 Tooling for Die CastingJain, Akshay Ashok January 2013 (has links)
No description available.
|
Page generated in 0.1224 seconds