• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 19
  • 12
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Numerical simulation of unsteady rotor/stator interaction and application to propeller/rudder combination

He, Lei, doctor of civil engineering 10 November 2010 (has links)
In this thesis, a numerical approach based on a potential flow method has been developed in order to simulate unsteady rotor/stator interaction, and to predict the unsteady performance of a propeller and its rudder. The method is first developed and tested in two-dimensions by using a boundary element method in which a front hydrofoil is moving downward, while a back hydrofoil is stationary. The wakes of the two hydrofoils are modeled by continuous dipole sheets and determined in time by applying a force free-condition on each wake surface. The wake/hydrofoil interaction is de-singularized by applying a numerical fence on the surface of the back hydrofoil. The viscous wake/hydrofoil interaction is considered by employing a viscous wake vorticity model on the rotor's wake surface. The present method is validated by comparison with analytical solutions, experimental data and by using the results from a commercial Reynolds Averaged Navier-Stokes (RANS) solver for the same set-up and conditions. The numerical approach is further extended to three-dimensions to predict the mutual interaction between a propeller and rudder. A fully unsteady wake alignment algorithm is implemented into a Vortex Lattice Method to simulate the unsteady propeller flow. The interaction between propeller and rudder is investigated in a fully unsteady manner, where a panel method is used to solve the flow around the rudder, and a vortex lattice method is used to solve the flow around the propeller. The interaction between a propeller and its rudder is considered in an iterative manner by solving the propeller and the rudder problems separately and by including the unsteady effects of one component on the other. The effect of the unsteady propeller-rudder interaction on the mean and on the unsteady propeller/rudder performance, including sheet cavitation on the rudder, is studied. / text
22

A Comparison of Euler Finite Volume and Supersonic Vortex Lattice Methods used during the Conceptual Design Phase of Supersonic Delta Wings

Guillermo-Monedero, Daniel 01 October 2020 (has links)
No description available.
23

Modeling Analysis and Control of Nonlinear Aeroelastic Systems

Bichiou, Youssef 15 January 2015 (has links)
Airplane wings, turbine blades and other structures subjected to air or water flows, can undergo motions depending on their flexibility. As such, the performance of these systems depends strongly on their geometry and material properties. Of particular importance is the contribution of different nonlinear aspects. These aspects can be of two types: aerodynamic and structural. Examples of aerodynamic aspects include but are not lomited to flow separation and wake effects. Examples of structural aspects include but not limited to large deformations (geometric nonlinearities), concentrated masses or elements (inertial nonlinearities) and freeplay. In some systems, and depending on the parameters, the nonlinearities can cause multiple solutions. Determining the effects of nonlinearities of an aeroelastic system on its response is crucial. In this dissertation, different aeroelastic configurations where nonlinear aspects may have significant effects on their performance are considered. These configurations include: the effects of the wake on the flutter speed of a wing placed under different angles of attack, the impacts of the wing rotation as well as the aerodynamic and structural nonlinearities on the flutter speed of a rotating blade, and the effects of the recently proposed nonlinear energy sink on the flutter and ensuing limit cycle oscillations of airfoils and wings. For the modeling and analysis of these systems, we use models with different levels of fidelity as required to achieve the stated goals. We also use nonlinear dynamic analysis tools such as the normal form to determine specific effects of nonlinearities on the type of instability. / Ph. D.
24

Amortecimento ativo para redução da resposta aeroelástica via fluidos eletro reológicos / Active damping to reduce the aeroelastic response via electro-rheological fluids

Nagamine, Renato Kazuki 22 November 2006 (has links)
Fenômenos aeroelásticos podem levar à drástica redução na vida útil de uma aeronave ou ainda resultam em danos severos à estrutura. Para manter as respostas dinâmicas em níveis aceitáveis técnicas como as estruturas adaptativas têm sido aplicadas. Este conceito explora a integração entre os elementos ativos (atuadores e sensores) e o controlador à estrutura. Dentre os materiais próprios para uso em estruturas adaptativas estão os fluidos eletro-reológicos e magneto-reológicos que tem se mostrado como um dos mais promissores materiais ativos. Estes materiais apresentam rápidas mudanças nas suas propriedades reológicas devido à ação de um campo elétrico ou magnético. Para sua incorporação em uma estrutura é utilizada uma viga sanduíche que tem seu comportamento dinâmico modelado através do método GHM para incorporar a dependência da freqüência dos fluidos ER/MR em um modelo estrutural no domínio do tempo. Através do acoplamento deste modelo com o método da malha de vórtices, é possível estudar a resposta aeroelástica temporal. Também é analisada a eficiência dos fluidos ER/MR no atraso da ocorrência de flutter. Isto é feito com o auxílio do método PK que determina a velocidade crítica de flutter. / Aeroelastic phenomena can lead to a drastic reduction in the fatigue life of aircraft or result in severe structural damage. To keep the dynamical responses at acceptable levels techniques such as the so-called adaptive structures have been adopted. This approach integrates active elements and controllers (actuators and sensors) to the structure. Among the materials suitable for adaptive structures are the electro-rheological (ER) and magneto-rheological fluids which are some of the most promising active materials. This kind of materials presents change in their rheological properties due to action of an external field, such as electrical or magnetic. In order to integrate these kind of fluids in the structure a sandwich beam with ER/MR fluids core is studied. The dynamical behaviour is modelled through a GHM method to incorporate the frequency dependence of the ER/MR fluids in a structural time domain model. By coupling this model to a vortex lattice model, it is possible to study the aeroelastic response in time domain. The ER/MR fluids efficiency to delay the flutter occurrence is also studied by using a PK-method that determines a critical velocity of flutter.
25

Amortecimento ativo para redução da resposta aeroelástica via fluidos eletro reológicos / Active damping to reduce the aeroelastic response via electro-rheological fluids

Renato Kazuki Nagamine 22 November 2006 (has links)
Fenômenos aeroelásticos podem levar à drástica redução na vida útil de uma aeronave ou ainda resultam em danos severos à estrutura. Para manter as respostas dinâmicas em níveis aceitáveis técnicas como as estruturas adaptativas têm sido aplicadas. Este conceito explora a integração entre os elementos ativos (atuadores e sensores) e o controlador à estrutura. Dentre os materiais próprios para uso em estruturas adaptativas estão os fluidos eletro-reológicos e magneto-reológicos que tem se mostrado como um dos mais promissores materiais ativos. Estes materiais apresentam rápidas mudanças nas suas propriedades reológicas devido à ação de um campo elétrico ou magnético. Para sua incorporação em uma estrutura é utilizada uma viga sanduíche que tem seu comportamento dinâmico modelado através do método GHM para incorporar a dependência da freqüência dos fluidos ER/MR em um modelo estrutural no domínio do tempo. Através do acoplamento deste modelo com o método da malha de vórtices, é possível estudar a resposta aeroelástica temporal. Também é analisada a eficiência dos fluidos ER/MR no atraso da ocorrência de flutter. Isto é feito com o auxílio do método PK que determina a velocidade crítica de flutter. / Aeroelastic phenomena can lead to a drastic reduction in the fatigue life of aircraft or result in severe structural damage. To keep the dynamical responses at acceptable levels techniques such as the so-called adaptive structures have been adopted. This approach integrates active elements and controllers (actuators and sensors) to the structure. Among the materials suitable for adaptive structures are the electro-rheological (ER) and magneto-rheological fluids which are some of the most promising active materials. This kind of materials presents change in their rheological properties due to action of an external field, such as electrical or magnetic. In order to integrate these kind of fluids in the structure a sandwich beam with ER/MR fluids core is studied. The dynamical behaviour is modelled through a GHM method to incorporate the frequency dependence of the ER/MR fluids in a structural time domain model. By coupling this model to a vortex lattice model, it is possible to study the aeroelastic response in time domain. The ER/MR fluids efficiency to delay the flutter occurrence is also studied by using a PK-method that determines a critical velocity of flutter.
26

Optimalizace tvorby tenkých vrstev kovových materiálů / Optimization of production of thin films of metallic materials

Čejka, Marek January 2014 (has links)
The present thesis deals with optimization of the formation of thin layers of metallic materials. In the theoretical part was elaborated overview of the implementation of the formation of thin- film structures, particularly using vacuum techniques. Chemical and physical vapor deposition. They were described methods of pretreatment of thin layers. The findings were discussed methods of controlling the pre-treated surface, quality control and mutual adhesion of coating layers. In the experimental part of the pre-treatment methods were selected and applied to selected substrates. Pretreatments were evaluated using a control surface by wetting angles and by atomic force microscopy. Then, the metal structure formed of copper on the pretreated substrates. Implementation by means of magnetron sputtering. Adhesion layers was checked by testing the surface lattice method. The quality was observed by scanning electron microscopy. The results were used to design the technological process of making metal layers.

Page generated in 0.0454 seconds