• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 59
  • 27
  • 22
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 406
  • 95
  • 64
  • 48
  • 46
  • 41
  • 37
  • 36
  • 30
  • 29
  • 26
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Multiscale heterogeneous polymer composites and soft synthetic fascia for 4D printed electrically controllable multifunctional structures with high stiffness and toughness

Morales Ferrer, Javier M. 24 May 2024 (has links)
4D printing is a rapidly emerging field in which 3D printed stimuli-responsive materials produce morphing and multifunctional structures, with time being the fourth dimension. This approach enables the 3D printing of pre-programmed responsive sheets, which transition into complex curved shapes upon exposure to external stimuli, resulting in a substantial reduction in material consumption and printing time (70 - 90 %). Commonly used materials for 4D printing are polymer composites, such as hydrogels, polydimethylsiloxane (PDMS), liquid crystal elastomers (LCEs), and shape memory polymers (SMPs). However, the low elastic modulus (E) that these materials exhibit during shape change (E range of 10-4 – 10 MPa) limits their scalability, actuation stress, and load bearing. Moreover, these materials exhibit low ultimate stresses, leading to correspondingly low toughness (K) values in the range of 0.08 to 5 MJ m-3. Consequently, this results in structures with low damage tolerance. Therefore, an existing challenge for the field of 4D printing is to develop materials that can maintain their large and predictable morphing mechanism for complex shape transformation, while improving the E and K for high performance applications. Furthermore, many existing approaches rely on passive structures that necessitate the control of global conditions of the surrounding environment (e.g., hot plates, ovens, external magnets, water baths) to provide the stimulus for actuation. In this work, we tackle these challenges by introducing novel materials, ink formulations, and innovative printing techniques for multi-material Direct Ink Writing (DIW). We aim to create electrically controllable 4D printed structures that exhibit exceptional stiffness and toughness, all while preserving a large and predictable morphing mechanism for intricate shape transformations. First, we introduce multiscale heterogeneous polymer composites as a novel category of stiff, electrically controllable thermally responsive 4D printed materials. These composites consist of an epoxy matrix with an adjustable cross-link density and a plurality of isotropic and anisotropic nanoscale and microscale fillers. Leveraging this platform, we generate a set of 37 inks covering a broad range of negative and positive linear coefficients of thermal expansion. This set of inks exhibits an elastic modulus range that is four orders of magnitude greater than that of existing 4D printed materials and offers tunable electrical conductivities for simultaneous Joule heating actuation and self-sensing capabilities. Utilizing electrically controllable bilayers as building blocks, we design and print a flat geometry that changes shape into a 3D self-standing lifting robot, displaying record actuation stress and specific force when compared to other 3D printed actuators. We integrate this lifting robot with a closed-loop control system, achieving autoregulated actuation exhibiting a 4.8 % overshoot and 0.8 % undershoot, while effectively rejecting disturbances of up to 170 times the robot's weight. Furthermore, we employ our ink palette to create and 3D print planar lattice structures that transform into various self-supporting complex 3D surfaces. Ultimately, we achieve a 4D printed electrically controlled crawling robotic lattice structure, highlighting its capacity to transport loads up to 144 times its own weight. Finally, we introduced a printable PDMS adhesive that serves as synthetic fascia to hold our epoxy-based synthetic muscle together, enhancing the K of our 4D printed structures, all while maintaining high stiffness, large, predictable, and addressable actuation mechanism. Through the integration of these soft adhesive materials with high-stiffness thermally responsive epoxies via DIW, we achieved an improvement of about two orders of magnitude in the K of the resulting synthetic muscle composite, all while maintaining high stiffness and morphing mechanism. Utilizing this fabrication method, we printed an electrically controllable bilayer exhibiting damage detection and tolerance, enduring up to 7 fractures while continuing to function effectively. Furthermore, we integrated the synthetic muscle composite into our lifting robot design, setting yet again new records in specific force and actuation stress when compared to other 3D printed actuators. Notably, even after failure, the actuator maintained its operational integrity and high performance. Ultimately, we present a 4D printed lattice structure featuring the incorporation the synthetic muscle composite, showcasing a sensitive electrically responsive surface with fracture detection capabilities. To emphasize this, we subjected one of these 4D printed lattices to extreme conditions, driving a car over it. Notably, the lattice structure detected fractures and exhibited high resilience, enduring external compressive damage equivalent to 331,060 times its own weight. / 2026-05-23T00:00:00Z
252

High temperature measurements of the microwave dielectric properties of ceramics

Baeraky, Thoria A. January 1999 (has links)
No description available.
253

Estudos das Propriedades de Termoluminescência (TL), Ressonância Paramagnética (EPR) e Absorção Ótica (AO) para caracterização do mineral Monticelita / Study of the Properties Thermoluminescence (TL), Electron Paramagnetic Resonance (EPR) and Optical Absorption for characterization of mineral Montecillite

QUINA, ANTONIO de J.A. de 22 December 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-12-22T12:40:27Z No. of bitstreams: 0 / Made available in DSpace on 2016-12-22T12:40:27Z (GMT). No. of bitstreams: 0 / Foram estudados as propriedades de absorção ótica, de termoluminescência e de ressonância paramagnética eletrônica do mineral natural de silicato de nome MONTICELITA do grupo Olivina, para caracterização desse mineral, cuja formula química é CaMgSiO4. A absorção ótica mostrou que há três bandas de absorção em 450 nm, 660 nm e 1050 nm. As duas primeiras bandas, a primeira no azul e a segunda no amarelo-vermelho são responsáveis pela cor verde da Monticelita. Essas duas bandas são consequência do elemento cromo contido no mineral absorver fótons do feixe universal no visível de frequências centradas em 450 nm e 660 nm. A banda em 1050 nm é devido ao Fe2+. As curvas de emissão de uma amostra de Monticelita irradiada com raios gama de doses entre 10 e 1000 Gy apresenta três picos em 150 °C , 270 °C e 370 °C . Pelo método da deconvolução e de várias taxas de aquecimento foram obtidos energia E1=1,35 eV e fator de frequência s1=4,98x1011 s-1 para o pico 270 °C e E2=1,70 eV e s2=1,88x1011 s-1 para pico 370 °C . A irradiação com raios gama de doses entre 5 kGy e 50 kGy produziram pico TL de 380 °C com intensidade TL em função da dose linear e crescente. Este resultado e importante para dosimetria da radiação de altas doses. O espectro EPR de uma amostra natural, mostrou um resultado não esperado e interessante. Além dos sinais típicos de interação hiperfina do Mn2+, um sinal avantajado de g =6,34 indica que o ferro formou moléculas de hematita, Fe2O3. Esse sinal desaparece com aquecimento acima de 800 °C de recozimento, dando origem dipolos magnéticos de Fe3+, que dá origem a um sinal típico em g =2. Esta descrição mostra bem a caracterização do mineral Monticelita. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
254

Photon Statistics in Disordered Lattices

Kondakci, Hasan 01 January 2015 (has links)
Propagation of coherent waves through disordered media, whether optical, acoustic, or radio waves, results in a spatially redistributed random intensity pattern known as speckle -- a statistical phenomenon. The subject of this dissertation is the statistics of monochromatic coherent light traversing disordered photonic lattices and its dependence on the disorder class, the level of disorder and the excitation configuration at the input. Throughout the dissertation, two disorder classes are considered, namely, diagonal and off-diagonal disorders. The latter exhibits disorder-immune chiral symmetry -- the appearance of the eigenmodes in skew-symmetric pairs and the corresponding eigenvalues in opposite signs. When a disordered photonic lattice, an array of evanescently coupled waveguides, is illuminated with an extended coherent optical field, discrete speckle develops. Numerical simulations and analytical modeling reveal that discrete speckle shows a set of surprising features, that are qualitatively indistinguishable in both disorder classes. First, the fingerprint of transverse Anderson localization -- associated with disordered lattices, is exhibited in the narrowing of the spatial coherence function. Second, the transverse coherence length (or speckle grain size) freezes upon propagation. Third, the axial coherence depth is independent of the axial position, thereby resulting in a coherence voxel of fixed volume independently of position. When a single lattice site is coherently excited, I discovered that a thermalization gap emerges for light propagating in disordered lattices endowed with disorder-immune chiral symmetry. In these systems, the span of sub-thermal photon statistics is inaccessible to the input coherent light, which -- once the steady state is reached -- always emerges with super-thermal statistics no matter how small the disorder level. An independent constraint of the input field for the chiral symmetry to be activated and the gap to be observed is formulated. This unique feature enables a new form of photon-statistics interferometry: by exciting two lattice sites with a variable relative phase, as in a traditional two-path interferometer, the excitation-symmetry of the chiral mode pairs is judiciously broken and interferometric control over the photon statistics is exercised, spanning sub-thermal and super-thermal regimes. By considering an ensemble of disorder realizations, this phenomenon is demonstrated experimentally: a deterministic tuning of the intensity fluctuations while the mean intensity remains constant. Finally, I examined the statistics of the emerging light in two different lattice topologies: linear and ring lattices. I showed that the topology dictates the light statistics in the off-diagonal case: for even-sited ring and linear lattices, the electromagnetic field evolves into a single quadrature component, so that the field takes discrete phase values and is non-circular in the complex plane. As a consequence, the statistics become super-thermal. For odd-sited ring lattices, the field becomes random in both quadratures resulting in sub-thermal statistics. However, this effect is suppressed due to the transverse localization of light in lattices with high disorder. In the diagonal case, the lattice topology does not play a role and the transmitted field always acquires random components in both quadratures, hence the phase distribution is uniform in the steady state.
255

Lattices and Their Application: A Senior Thesis

Goodwin, Michelle 01 January 2016 (has links)
Lattices are an easy and clean class of periodic arrangements that are not only discrete but associated with algebraic structures. We will specifically discuss applying lattices theory to computing the area of polygons in the plane and some optimization problems. This thesis will details information about Pick's Theorem and the higher-dimensional cases of Ehrhart Theory. Closely related to Pick's Theorem and Ehrhart Theory is the Frobenius Problem and Integer Knapsack Problem. Both of these problems have higher-dimension applications, where the difficulties are similar to those of Pick's Theorem and Ehrhart Theory. We will directly relate these problems to optimization problems and operations research.
256

Energies de réseaux et calcul variationnel / Lattices energies and variational calculus

Betermin, Laurent 21 September 2015 (has links)
Dans cette thèse, nous étudions des problèmes de minimisation d'énergies discrètes et nous cherchons à comprendre pourquoi une structure périodique peut être un minimiseur pour une énergie d'interaction, c'est ce que l'on appelle un problème de cristallisation. Après avoir montré qu'un réseau de R^d soumis à un certain potentiel paramétré peut être vu comme un minimum local, nous démontrons des résultats d'optimalité du réseau triangulaire parmi les réseaux de Bravais du plan pour certaines énergies par point, avec ou sans densité fixée. Finalement, nous démontrons, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb bidimensionnels, la conjecture de Rakhmanov-Saff-Zhou, c'est-à-dire l'existence d'un terme d'ordre n dans le développement asymptotique de l'énergie logarithmique optimale pour n points sur la sphère unité de R^3. De plus, nous montrons l'équivalence entre la conjecture de Brauchart-Hardin-Saff portant sur la valeur de ce terme d'ordre n et celle de Sandier-Serfaty sur l'optimalité du réseau triangulaire pour une énergie coulombienne renormalisée / In this thesis, we study minimization problems for discrete energies and we search to understand why a periodic structure can be a minimizer for an interaction energy, that is called a crystallization problem. After showing that a given Bravais lattice of R^d submitted to some parametrized potential can be viewed as a local minimum, we prove that the triangular lattice is optimal, among Bravais lattices of R^2, for some energies per point, with or without a fixed density. Finally, we prove, from Sandier and Serfaty works about 2D Coulomb gases, Rakhmanov-Saff-Zhou conjecture, that is to say the existence of a term of order n in the asymptotic expansion of the optimal logarithmic energy for n points on the 2-sphere. Furthermore, we show the equivalence between Brauchart-Hardin-Saff conjecture about the value of this term of order n and Sandier-Serfaty conjecture about the optimality of triangular lattice for a coulombian renormalized energy
257

Crystal structure prediction : a molecular modellling study of the solid state behaviour of small organic compounds

Asmadi, Aldi January 2010 (has links)
The knowledge of the packing behaviour of small organic compounds in crystal lattices is of great importance for industries dealing with solid state materials. The properties of materials depend on how the molecules arrange themselves in a crystalline environment. Crystal structure prediction provides a theoretical approach through the application of computational strategies to seek possible crystal packing arrangements (or polymorphs) a compound may adopt. Based on the chemical diagrams, this thesis investigates polymorphism of several small organic compounds. Plausible crystal packings of those compounds are generated, and their lattice energies are minimised using molecular mechanics and/or quantum mechanics methods. Most of the work presented here is conducted using two software packages commercially available in this field, Polymorph Predictor of Materials Studio 4.0 and GRACE 1.0. In general, the computational techniques implemented in GRACE are very good at reproducing the geometries of the crystal structures corresponding to the experimental observations of the compounds, in addition to describing their solid state energetics correctly. Complementing the CSP results obtained using GRACE with isostructurality offers a route by which new potential polymorphs of the targeted compounds might be crystallised using the existing experimental data. Based on all calculations in this thesis, four new potential polymorphs for four different compounds, which have not yet been determined experimentally, are predicted to exist and may be obtained under the right crystallisation conditions. One polymorph is expected to crystallise under pressure. The remaining three polymorphs might be obtained by using a seeding technique or the utilisation of suitable tailor made additives.
258

Magnetic anisotropy in nanostructures

Eisenbach, Markus January 2001 (has links)
No description available.
259

Structure of grain boundaries in hexagonal materials

Sarrazit, Franck January 1998 (has links)
No description available.
260

Structure-microwave dielectric property relations in Sr and Ca titanates

Wise, Peter Leonard January 2001 (has links)
No description available.

Page generated in 0.0595 seconds