• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissipation and Leachability of Formulated Chlorpyrifos and Atrazine in Organically-amended Soils

Xiao, Yunxiang III 10 December 1997 (has links)
Bioremediation was studied in soils containing high concentrations of formulated chlorpyrifos (5 mg kg-1 Dursban® 4E) and atrazine (5 mg kg-1 AAtrex® 4L) using amendments including lignocellulosic sorbents, microbial nutrients (vegetable oil, corn meal and fertilizers), and microbial extracts from organic media previously exposed to these pesticides (chlorpyrifos and atrazine, respectively). Radiolabeled atrazine was used to examine the various dissipation routes in contaminated soil, also amended with lignocellulosic sorbents and microbial nutrients. Both chlorpyrifos and atrazine dissipation from contaminated soils was enhanced by organic-based material amendments. The half-lives of chlorpyrifos based on extractability for soils unamended and amended with vegetable oil and peat moss were 87 and 52 days, respectively. The half-lives of atrazine in unamended and amended soil (vegetable oil, peat moss and fertilizers) were 175 and 40 days, respectively. The leachability of chlorpyrifos from contaminated soil was dramatically reduced by 82% during the first 30 days of incubation in treatments amended with vegetable oil and peat moss while only a 28% of reduction in leachability occurred in the corresponding unamended controls. Only a slight reduction of atrazine leachability was detected in amended treatments after 120 days of incubation. Differences were found in the leachability of chlorpyrifos and atrazine when they were applied to soil either as technical grade or formulated material. The presence of surfactants and other adjuvants in formulated chlorpyrifos (Dursban® 4E) reduced chlorpyrifos leachability in contaminated soil. Chlorpyrifos leachability was reduced by 43% in the formulated chlorpyrifos treatments, whereas there was a negligible decrease in technical chlorpyrifos treated soil during the first 3 days after contamination. Atrazine extractability and leachability was not affected by its formulation (AAtrex® 4L). Amendments with lignocellulosic sorbents and nutrients decreased atrazine®s volatility from contaminated soils. After 16 weeks of incubation, less than 1% of 14C-atrazine was volatilized from incubated soils. Overall, after 16 weeks of incubation less than 4% of 14C-atrazine was mineralized and more radioactivity was recovered from amended treatments than unamended treatments as 14CO2. The major portion of radioactivity (62%) was associated with physisorbed atrazine represented by the ethylacetate extract I from unamended treatments while only 28% of initial applied radioactivity was recovered in the corresponding amended treatments. Based on the sum of radioactivity in humic and fulvic acids, approximately 14% of radioactivity was incorporated or chemisorbed atrazine and its metabolites in both unamended and amended treatments. Forty-five percent of the initially applied radioactivity was associated with alkali insoluble fraction in amended treatments but only 17% of the initially applied radioactivity was detected in the corresponding unamended treatments. Less than 2 % of initial activity associated with physisorbed portions of fulvic acids and alkaline insoluble fraction indicated as the radioactivity in methylene chloride and ethylacetate extract II . Over time, more radioactivity was associated with polar atrazine hydroxylated degradation products. / Ph. D.
2

Temperature Dependence of the Leachability of Cemented Paste Backfill

Bull, Andrew 05 March 2019 (has links)
Underground mining is a mineral acquisition technique that is critical to global economies, and human technological advancements. As shallow resource reserves are depleted, mine depths are increasing to accommodate global mineral demand. Increases in mine throughputs and excavation depths pose increased environmental concerns. Tailings surface disposal, and underground mine support are two considerable environmental and geotechnical factors of concern in current day mining. Underground waste disposal has been adopted by the mining industry in many forms. Cemented paste backfill (CPB) is a common best management practice developed to tackle these two specific resource industry related issues worldwide. CPB is a cement-stabilized material composed of tailings, water, and hydraulic binder. Tailings disposal areas on the earth’s surface are reduced by disposing of tailings in subsurface stopes that have been previously excavated. This increases underground safety by providing structural support to the mine. There are also economic benefits to this practice, as the additional support allows for adjacent pillars to be excavated. Although CPB greatly reduces tailings exposure to atmospheric elements, there are still underground environmental factors that must be considered with respect to environmental performance. CPBs are porous media, meaning they are susceptible to leaching of naturally occurring metals that are no longer in a stable condition as they were when incorporated in the parent rock. Arsenic and lead are metals of concern due to their association with many ore bodies. Leaching of these unstable metals may be influenced by the backfill curing temperature and the chosen hydraulic binder. Curing temperatures may be influenced by geographic location, local stope geology and depth, hydration and transport, among others. Hydraulic binders are chosen based on availability, cost, and desired mechanical properties of the paste. In this research, the effect of curing temperature and binder composition on the leachability of CPB are studied. ASTM C 1308 leaching protocol is used to determine the leachability of six CPBs. In addition, microstructural techniques (Powder X-Ray Diffraction, Mercury Intrusion Porosimetry, and Scanning Electron Microscopy) are used to relate the microstructural properties of the CPB to the leaching characteristics. Results reveal that CPBs cured with ordinary Portland cement (OPC) leach significantly less than CPBs cured with an OPC/Blast furnace slag (Slag) binder (50% blending ratio) as a result of CH consumption in slag hydration. Both CH and C-S-H are responsible for immobilizing arsenic in cement stabilized materials. OPC-CPBs contain greater relative quantities of CH, which aids in arsenic immobilization. Between the range of 2°C and 35°C OPC-CPB performed better at lower curing temperatures. Lower curing temperatures are favoured in OPC-CPB because the pore surface greater than the threshold pore diameter is reduced. Alternatively, OPC/Slag-CPB exhibited a decrease in cumulative mass leached at higher curing temperatures. The difference in cumulative mass leached by the OPC/Slag-CPBs is also related to the pore surface, and threshold pore diameter.
3

COLUMN LEACHING TESTS TO STUDY MOBILIZATION OF RADIONUCLIDES IN LINER SYSTEM OF ON-SITE DISPOSAL FACILITY AT FERNALD SITE

ZHANG, WEI 11 October 2001 (has links)
No description available.
4

Effect of Calcium on Arsenic Release From Ferric and Alum Sludges and Lagoons

Parks, Jeffrey Lynn 03 October 2001 (has links)
The dewatering of arsenic-containing residuals is a process that has received little study in the past. Arsenic that has been removed from water by sorption to ferric or aluminum hydroxides can accumulate in residuals to concentrations many times higher than in the source water. The first part of this study evaluates the effectiveness of lime conditioning as a method for immobilizing this arsenic. As the pH is increased with addition of caustic soda or soda ash, soluble arsenic concentration increases dramatically. However, as the pH is increased with lime, very little arsenic is released back into the water. On the basis of previous research this phenomenon might be attributed to the formation of a calcium arsenate solid. However, this study indicates it is more likely that the soluble calcium neutralizes the negative surface charge on the hydroxide solids at high pH and enhances arsenic sorption compared to when calcium was absent. In many cases arsenic-containing residuals are stored in lagoons and allowed to reside there for months or even years. Many parameters may affect the soluble arsenic concentration and speciation in these lagoons. The second portion of this study gives some baseline conditions for these lagoons, both with and without microbial activity and biological organic matter. In these practical situations it appears that lime can assist in keeping arsenic sorbed to the solids and prevent its release to the environment. / Master of Science
5

Investigation of pollution coming from copper, lead, and zinc mining, and factors controlling mobility and bioavailability of pollutants at Ecton Hill, Staffordshire, UK

Al-Ibrahim, Zahid Omar Mustafa January 2017 (has links)
Former mining areas are well-known globally to be a significant anthropogenic source of contaminants being dispersed into the surrounding environment. Various human activities, including ore mineral mining, industrial activities, domestic waste production, and the agricultural application of fertilisers and pesticides, are likely to contribute to the release of huge amounts of potentially toxic metals into the ecosystem, which have harmful effects on the flora and fauna and on human health. Therefore, the main aim of this study is to evaluate the contamination that arises from some selected heavy metals (Cu, Pb, Zn, Mn, Cr, Ni, and V) in topsoil and floodplain samples from the Ecton mining area. Ecton Hill is located in the southern part of the Peak District, Staffordshire, England, and bounded by the River Manifold from the west. This area has been mined for sulphide minerals, which were extracted extensively from the 16th century until the mid-19th century; the area is currently being used for cattle rearing and agricultural purposes. Therefore, it would be worth finding out the extent to which the area has been polluted by the aforementioned metals. To this end, topsoil and floodplain samples were collected and analysed for their total concentrations using XRF technique and different granulometric classes (i.e. clay, silt, and sand) using a (Malvern Mastersizer Long Bed) laser granulometer with a presentation unit of MS-17. In addition, soil specific factors, including organic matter content, organic carbon, pH, Eh, and cation exchange capacity were also measured. Spatial distribution maps were constructed using a GIS approach for the metals studied over the study area. Contamination and ecological risk assessments were carried out via the geoaccumulation index (Igeo) and enrichment factors (EF) respectively. Moreover, collected soils for different land uses have been assessed using the UK government soil guidelines (i.e. ICRCL and CLEA's SGVs soil values). Furthermore, the bioavailability, leachability, and fractionation (using five-steps sequential extraction) of the metals in various soil phases were characterised using correlation matrix and principal component analysis (PCA) approaches. The GIS- based spatial analysis maps reveal that elevated concentrations of the metals are located around the sites of the mining waste in the area. The contamination assessment results indicate that Cu, Pb, Zn have a contamination degree ranging between strongly contaminated (class 4) and extremely contaminated (class 6). The results of the ecological assessment by enrichment factor (EF) show that Pb has the highest enrichment factor. The bioavailability results of the heavy metals under study, via EDTA, show that Cu, Pb, Zn have the highest bioavailable fractions. The regression analysis demonstrates that Mn gives the best fit regression equation with the highest R2 value of 0.825. The leachability results reveal that, of the seven heavy metals, Zn has the highest leachable value, whereas the lowest leachable was recorded for Cr. Speciation was measured using the five-steps procedure, and the results show that Cu, Pb and Zn are mainly associated with the organic matter fraction, whilst, Cr, Ni and V are associated with the residual fraction. The principal component analysis (PCA) revealed that oxides of Fe/Al, organic matter, and the clay and silt fractions are the main soil parameters responsible for binding heavy metals to the soil surfaces of the study area. Changing the redox potential conditions and acidification was investigated and the results indicate that such changes have significant effects on the release of heavy metals from the soil particles at Ecton Hill.
6

Cr (VI)-Containing electri furnace dust and filter cake: characteristics, formation, leachability and stabilisation

Ma, Guojun 18 October 2006 (has links)
In South Africa, the ferrochromium industry produces approximately 100,000 t bag house filter dust and slurry, while the stainless steel industry produces 24,000 t of dust annually [17,39]. The toxic substances in these wastes potentially pose a threat to the environment and human health, especially Cr (VI) due to its toxic, carcinogenic, highly soluble and strongly oxidizing properties. Therefore, the existence and treatment of wastes from stainless steel and ferrochrome production remain a challenge and an issue of concern. The increase of environmental legislation globally and the trend towards sustainable development are drives for alternatives to landfill. In the present thesis, the characteristics, formation mechanisms, leachability and stabilisation of the Cr (VI)-containing electric furnace dust and filter cake were investigated using various techniques such as XRD, XRF, TG/DTA, XPS, SEM-EDS, FT-IR, Raman spectrometer and UV/Vis spectrometer. The electric furnace dust and filter cake are very fine particles. Stainless steel dust forms by the entrainment of charge materials, evaporation or volatilisation of elements and ejection of slag and metal by spitting or the bursting of gas bubbles. It was found that ferrochrome dust is formed by the ejection of slag and metals droplets from the electrode hole, the entrainment of charge materials, vaporisation as well as the formation and precipitation of compounds from vaporised species in the off-gas duct. Filter cake contains crystal phases (CaF2 and CaSO4 ) and metal rich amorphous phases. It is formed due to super saturation and precipitation. Leaching experiments on the wastes showed that Cr (VI) rapidly leaches out by distilled water. Bricks were produced by mixing wastes (stainless steel plant dust, ferrochrome dust and filter cake) and clay. The optimum sinter parameter was found to be 1100oC and 5 hours for a 50wt% SPD-50wt% AS mixture in the brick. The leachability of Cr(VI) is strongly influenced by the mass%CaO/mass%SiO2 ratio and alkali metal oxides content in the wastes. The emission factors from the stabilised wastes (SPD, FCD1, FCD2 and FC) are similar to those reported for the cement industry. Semi-dynamic leaching tests indicated that the predominant leaching mechanisms of chromium species are initial surface wash-off followed by matrix diffusion. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
7

Ekotoxikologické hodnocení kalů z čistíren odpadních vod / Ecotoxicological evaluation of the sludges from water treatment plants

Hellingerová, Lucie January 2008 (has links)
Evaluation of the sewage sludges from different sewage water treatments will be performed by means of available ecotoxicity tests. The evaluation will be done in accordance with the valid legislation. On the basis of the obtained values the sludges will be classified into the respective grades of leachability and the dangerous property of the sewage sludges ecotoxicity will be evaluated.
8

En studie om brandegenskaper som förändras hos en träfasad som exponeras av utomhusklimat

Näsholm, Jennie January 2022 (has links)
Trä som byggnadsmaterial har ökat inom byggbranschen de senaste åren. Detta på grund av att trä är ett miljövänligt och förnybart material. Dock ställer trä som byggnadsmaterial en hel del utmaningar då trä är brandkänsligt och kan behöva brandskydds-behandlas innan användning. Detta görs för att minska risken för uppkomst av brand och kan göras på två sätt, antingen genom att brandskyddsimpregnera eller flamskyddsmåla träprodukten. Den främsta uppgiften brandskyddsmedel har är i det tidiga skeendet av brand då det kan förlänga tiden till antändning. Funktionen brandskyddsbehandlingen har på träprodukten kan över tid minska och kan variera kraftigt i dess duglighet. Tillvägagångsätten för att bestämma brandskyddsbehandlade träprodukters beständighet över tid är olika och det tas kontinuerligt fram olika studier, forskning och experiment. 2017 fastställdes en europeisk standard, EN 16755, som innehåller olika bruksklasser för brandskyddets beständighet. Standard togs framför att hjälpa och ge vägledning till användare för att hitta passande brandskyddade produkter och motivera tillverkarna till att producera och leverera bra produkter.I detta arbete har flera olika studier granskats och studerats över vilka brandegenskaper som förändras när brandskyddsbehandlade träfasader exponeras för utomhusklimat. Tre studier har utfört accelererad och naturlig åldring där huvudsyftet har varit att se hur träets beständighet förändras över tid. Andra studier har studerat och testat vilka egenskaper brandhämmandekemikalier har för träprodukten. Melaminformaldehydharts, borsyra och guanylureafosfatanvänds som brandhämmande kemikalie för att nämna några. Slutsatsen drogs att brandskyddsmedel kan avsevärt förbättra brandegenskaperna genom att förlänga antändningstiden, ge högre LOI-värden och ge lägre värmeavgivningshastighet, HRR. LOI är ett syreindex som är ett index för hur mycket syre som krävs för förbränning av träet. Men över tid minskar brandskyddet och dess funktion förloras då brandskyddsmedlet lakas ut från träprodukten. En av studierna använde predikteringsmodeller för att utvärdera vilken klass träpanelerna som har utsatts för naturlig åldring har. Studien klassade träpanelerna i euroklass D eller lägre. Vilket motsvarar samma klass som obehandlade och omålade träpaneler
9

Enhancing The Potential Of Class F Fly Ashes For Geotechnical And Geoenvironmental Applications

Moghal, Arif Ali Baig 02 1900 (has links) (PDF)
Thermal power station in most countries is saddled with the problem of fly ash disposal and unless suitable avenues are found for its proper use, this would pose a gigantic problem to the power sector. Disposal of huge quantities of fly ashes without proper care causes considerable impact on the environment particularly the one leading to soil and groundwater contamination. On the other hand, fly ashes have many desirable properties which can find applications in civil engineering, especially in geotechnical engineering. The pozzolanic reactivity is one of the important properties of fly ashes that enhance its application. Thought the fly ashes with self – pozzolanic property are well utilized, fly ashes with insufficient free lime, such as class F fly ashes are being grossly underutilized and they form a considerable portion of fly ashes that are disposed. Yet another factor restricting the use of fly ash is the concern about the leachability of lime under field conditions particularly under saturated or partially saturated conditions. Hence an attempt is made in this thesis, to reduce the lime leachability of class F fly ashes with different additives. Thus, selection of right amounts of additives to reduce the lime leacability is an important aspect studied in this thesis. Effect of such as strength, compressibility, and CBR value is also investigated. Another simple way to reduce the problem of disposal of fly ash is to utilize it for the construction of waste disposal sites particularly for lining solid waste disposal facilities in place of the natural clay materials which are very often procured by excavating and transporting from far off places. Also, the capacities of fly ashes to sorb heavy metal that are likely to be present in the leachates generated from the industrial wastes have been studied. Of the other factors limiting the generous use of fly ashes is the leachability of several trace elements present in them. Hence the leachability of trace metals from fly ashes under different practical situations, before and after incorporating the selected additives for improving the engineering properties of fly ashes, has been studied. The thesis is presented in 10 chapters. The relevant background for the studies and scope of the work is given Chapter 1. Sources of the fly ashes collected for the investigating along with their physical and chemical properties are presented in chapter 2. Two low line fly ashes are collected directly from the electronic precipitators of the thermal power plants located at Neyvelli town of the Tamil nadu and Maddanur town of Andhra Pradesh, India, named NFA and MFA respectively. MFA has greater finer particle content than NFA. The particles of MFA Have rougher surface compared to those of NFA. Both of fly ashes have predominantly quartz and mullite phase in them. The silica, total lime and carbon contents which have major influence on the pozzolanic reactivity of fly ashes vary considerably in the both the fly ashes. Lime leachability is taken as the amount of lime that is converted into soluble form (by dissociation into calcium and hydroxyl ions) under a standardized condition. It can be used to asses the long term sustainability of the strength achieved in fly ashes with lime. Lime leachability studies have been conducted on the fly ashes stabilized with different additives in specially designed moulds. Results presented in Chapter 3 showed that leachability of lime in fly ashes increases with the increase in lime content though it is not in proportion to the increase in lime content. This is because the solubility of lime is less and is independent of the total lime present. The marginal reduction in leachability is mainly due to cemented matrix of fly ash inhibiting the leaching of time. The higher the strength of the matrix the lower is the leachability. Further it is made clear that at any lime content presence of gypsum reduces the time leachability which has been attributed to the transformation of pozzolanic compounds into less soluble form than the compounds formed with lime alone. With the increase in curing period, the amount of lime that leaches from the lime-stabilized fly ashes as well as those treated with gypsum to a considerable extent. The nature of alteration does not seem to change with time as revealed by a good correlation between lime leachability ratios obtained after 7 days and 14 days of curing periods. Chapter 4 presents the results of unconfined compressive strength tests carried out on fly ashes with varying lime and gypsum contents, before soaking and also soaking in several heavy metal solutions, along with the durability to the cycle of wetting and drying. The results revealed that the strength of low lime fly ashes increases with lime content significantly up to the optimum lime content of about 2.5 – 5% and gradually thereafter. Addition of gypsum of 1 – 2.5% increases the strength of fly ashes further at any lime content. Increase in strength with gypsum, which is quite significant at lower lime contents initially, is observed for a considerable period (up to 180 days) at higher lime contents. The increase in strength is as high as 40-fold in some instances. This increase in strength which is also more durable has been attributed to the formation of calcium – sodium – aluminium - silicate hydrate along with calcium silicate hydrate. Further, it is observed that fly ash which responds better to lime stabilization shows accelerated gain in strength due to the addition of gypsum at early curing periods than the fly ash that responds solely to lime. Decrease in lime leachability ratio is a good indication of the increased strength along with the increased durability. California Bearing Radio (CBR) values are of great significance in the utilization of fly ashes in bulk quantities for the construction of road and railway embankments and pavements. Studies conducted to determine the CBR values of fly ashes with different lime and gypsum contents after curing for different time periods are described in chapter 5. The CBR values are observed to increase with lime alone significantly up to 2.5% and only marginally beyond. But the increase in CRB values is considerable with gypsum at any lime content. The increase in CBR value is particularly more with 2.5% gypsum for fly ashes with 2.5% lime. The CBR values of stabilized fly ashes are generally higher for 5 mm depth of penetration than those for 2.5 mm one due to the high stiffness of the matrix formed even at low strain levels. The loss in CBR values with soaking is relatively more at lower curing the periods due to the improper cementation of particles. Even after this significant loss in CBR values, fly ashes with 2.5% lime and 2.5% gypsum register the maximum values after curing under soaked condition. Unlike in the case of unconfined compressive strength, lime leachability values could not be well correlated with the CBR values of fly ashes with different lime and gypsum contents since many more factors influence the CBR values than those of unconfined compressive strength alone. Chapter 6.brings out the effects of addition of lime alone and lime along with gypsum on the compressibility behaviour of the fly ashes. Since the fly ashes when treated with additives develop strength and exhibit lower compression with the passage of time, consolidation testing with conventional duration of load increment may not be appropriate. Hence an attempt has been made to assess the minimum duration of load increment necessary to study the compressibility characteristics of such materials. Thus the compressibility behaviour of fly ashes with additives has been studied using conventional consolidation test with different durations of load increments varying from 30 minutes to 48 hours. The results indicated that 30 minutes of duration of load increment can be used to assess the compressibility behaviour of such materials. The effect of lime which reduces the compression is seen to be maximum from the results obtained with the load duration increment of 30 minutes but gradually reduce with higher duration of load increment. It has also been observed that the rate of decrease in the compressibility is maximum up to 2.5% lime and thereafter gradual. The compressibility of lime –treated fly ashes further reduces when gypsum is incorporated, the optimum gypsum percentage being 2.5. This reduction in the compressibility of fly ashes enhanced by incorporating lime and gypsum makes them versatile in the construction of embankments and for structural fills, particularly reducing the time required in between laying of each lift. It has been brought out that decrease in the lime leachability decreases the compressibility of fly ashes. Fly ash has potential application in the construction of base liners of waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of hydraulic conductivities they attain may often not meet the basic requirement of a liner material. Attempts to reduce the hydraulic conductivity by adding lime as gypsum along with lime to both the fly ashes are presented in chapter 7. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head methods. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the fly ashes containing gypsum is significantly more of sample with high amounts of lime contents (as high as 1000 times) than those with lower amounts of lime. However, there is relatively more increases in the strengths of the samples with the inclusion of gypsum to the fly ashes even at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted in to pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of gypsum is observed to produce more cementitious compounds which block the pores in the fly ash. Amount of lime leached in the found to be directly related to the hydraulic conductivity inspite of many –fold variations in the hydraulic conductivity achieved by curing fly ash with lime and gypsum. The consequent reduction on the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements in the fly ash when used as base liner. Fly ash contains trace metals and other substances in the sufficient quantities which may leach out over a period of time. The study has been extended to examine the leachability of a few selected trace metals viz., Cd, Cu, Cr, Mn, Pb and Zn from fly ash before and after incorporating additives has been reported in chapter 9. The standard laboratory leaching test for the combustion residues developed by Van der Sloot et al. has been employed to study the leachabilities of trace elements as a function of liquid to solid (L/S) ratio and pH. The leachability test were conducted on the powdered fly ash samples obtained from unconfined compressive strength tests, conducted after a curing period of 28 and 180 days. It observed that, there is a marked reduction in the relative leachabilities of trace elements present, at the end of 28 days which reduced only marginally at the end of 180 days. Chapter 9 reports the retention capacities of fly ashes for copper, lead and zinc metals ions. Various parameters like contact time, initial concentration and pH have been varied and their effect on retention mechanism studied. The retention order of metals ions, Cu+ 2 > Pb+2>Zn+2, is observed to be the same for both the fly ashes at all pH values. The dominant mechanisms responsible for the retention are precipitation at higher pH’s as hydroxides and adsorption at lower pH’s Due to presence of silica and alumina oxide surface in fly ash. First order kinetic plots have revealed that the rate constant value increases with increase in initial concentration and pH. Langmuir adsorption isotherms have been plotted to study the maximum adsorption isotherms have been plotted to study the maximum adsorption capacities for metal ions under different conditions. The older indicates that the adsorption is predominantly by silica surface than that by alumina or iron oxide surfaces. This thesis demonstrates that incorporation of gypsum along with lime in the optimal proportions not only reduces the lime leachability but also greatly enhances the strength and CBR values, reduces the compressibility and minimizes the leaching of trace elements present in them enhancing the potential of fly ashes for many applications. Detailed conclusions are presented in chapter 10. The study greatly helps in promoting the use of fly ashes for many geotechnical and geo-environmental applications.
10

Fixace těžkých kovů v cementové matrici s příměsí přírodního zeolitu / Immobilization of heavy metals in the cement matrix with the admixture of natural zeolite

Semerádová, Nikol January 2017 (has links)
Heavy metals released to the natural ecosystem constitute significant risks not only for organisms, but also for water supplies in the nature. There are a number of analytical methods for the determination of heavy metals. Each of them is suitable for different element and its character. Since the results of the analysis are applied during the solidification and stabilization, it is necessary to ensure the highest correlation between hazardous waste and solidification medium for maximum inhibition of toxic ions. This work investigates the stabilization of heavy metals binders based on cement base with admixture of the natural zeolite and its possible use for the solidification of heavy metals in soluble form.

Page generated in 0.0542 seconds