1 |
A Lefschetz fixed point formula in the relative elliptic theorySchulze, Bert-Wolfgang, Tarkhanov, Nikolai N. January 1998 (has links)
A version of the classical Lefschetz fixed point formula is proved for the cohomology of the cone of a cochain mapping of elliptic complexes. As a particular case we show a Lefschetz formula for the relative de Rham cohomology.
|
2 |
The Lefschetz number of sequences of trace class curvatureTarkhanov, Nikolai, Wallenta, Daniel January 2012 (has links)
For a sequence of Hilbert spaces and continuous linear operators the curvature is defined to be the composition of any two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra.
Of particular interest are those sequences for which the curvature is "small" at each step, e.g., belongs to a fixed operator ideal. In this context we elaborate the theory of Fredholm sequences and show how to introduce the Lefschetz number.
|
3 |
A Lefschetz fixed point formula for elliptic quasicomplexesWallenta, Daniel January 2013 (has links)
In a recent paper with N. Tarkhanov, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.
|
4 |
O número de Lefschetz e teoremas do tipo Borsuk-Ulam /Trinca, Cibele Cristina. January 2007 (has links)
Orientador: Maria Gorete Carreira Andrade / Banca: Ermínia de Lourdes Campello Fanti / Banca: Denise de Mattos / Resumo: Neste trabalho, estudamos o Teorema clássico de Borsuk - Ulam e também outros Teoremas do tipo Borsuk - Ulam. Para isto, consideramos aplicacões contínuas f : (Cn+1 L f0g) ! Cn. Uma raíz primitiva k - ésima da unidade » nos fornece uma Zk-acão livre sobre Cn. Um teorema nos diz que a equação kL1X i=0 »if(»ix) = 0 sempre tem uma solução x 2 (Cn+1 L f0g). Este resultado produz várias aplicações. Por exemplo, se p é um número primo, f : Sn ! Rr uma aplicacão contínua, com n > r(p L 1), então alguma órbita da Zp-ação deve ser aplicada em um ponto. / Abstract: In this work, we study the Classical Borsuk-Ulam Theorem and also other Borsuk- Ulam Theorems. For that, we consider continuous maps f : (Cn+1 L f0g) ! Cn. A primitive k-root of unity » gives rise to a free Zk-action on Cn. A result states that the equation kL i=0 »if(»ix) = 0 always has a solution x 2 (Cn+1 L f0g). This result provides several aplications. For example, if p is a prime number, f : Sn ! Rr a continuous map and n > r(p L 1), then some orbit of the Zp-action must be mapped into a point. / Mestre
|
5 |
O número de Lefschetz e teoremas do tipo Borsuk-UlamTrinca, Cibele Cristina [UNESP] 21 March 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-03-21Bitstream added on 2014-06-13T20:26:59Z : No. of bitstreams: 1
trinca_cc_me_sjrp.pdf: 385971 bytes, checksum: f33970449a23cc2073a2912a75704466 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudamos o Teorema clássico de Borsuk - Ulam e também outros Teoremas do tipo Borsuk - Ulam. Para isto, consideramos aplicacões contínuas f : (Cn+1 L f0g) ! Cn. Uma raíz primitiva k - ésima da unidade » nos fornece uma Zk-acão livre sobre Cn. Um teorema nos diz que a equação kL1X i=0 »if(»ix) = 0 sempre tem uma solução x 2 (Cn+1 L f0g). Este resultado produz várias aplicações. Por exemplo, se p é um número primo, f : Sn ! Rr uma aplicacão contínua, com n > r(p L 1), então alguma órbita da Zp-ação deve ser aplicada em um ponto. / In this work, we study the Classical Borsuk-Ulam Theorem and also other Borsuk- Ulam Theorems. For that, we consider continuous maps f : (Cn+1 L f0g) ! Cn. A primitive k-root of unity » gives rise to a free Zk-action on Cn. A result states that the equation kL i=0 »if(»ix) = 0 always has a solution x 2 (Cn+1 L f0g). This result provides several aplications. For example, if p is a prime number, f : Sn ! Rr a continuous map and n > r(p L 1), then some orbit of the Zp-action must be mapped into a point.
|
6 |
Sobre teoremas de equilíbrio de Nash / On Nash equilibrium theoremsMonis, Thais Fernanda Mendes 27 August 2010 (has links)
Nesse trabalho, aplicando métodos da Topologia Algébrica, nós obtivemos novas versões do teorema de equilíbrio de Nash. Nós definimos um conceito de equilíbrio local para jogos não cooperativos, o chamado equilíbrio local fraco, e demonstramos sua existência quando os espaços de estratégia são variedades diferenciáveis e as funções payoff são continuamente diferenciáveis. Nós demonstramos a ineficiência do equilíbrio local fraco no sentido de Pareto / In this work, applying methods of Algebraic Topology, we obtain new versions of the Nash equilibrium theorem. We define a concept of local equilibrium for non-cooperative games, the socalled weak local equilibrium, and we prove its existence when the spaces of strategies are differentiable manifolds and the payoff functions are continuously differentiable. We prove the ineffciency of weak local equilibrium in the Pareto sense
|
7 |
Sobre teoremas de equilíbrio de Nash / On Nash equilibrium theoremsThais Fernanda Mendes Monis 27 August 2010 (has links)
Nesse trabalho, aplicando métodos da Topologia Algébrica, nós obtivemos novas versões do teorema de equilíbrio de Nash. Nós definimos um conceito de equilíbrio local para jogos não cooperativos, o chamado equilíbrio local fraco, e demonstramos sua existência quando os espaços de estratégia são variedades diferenciáveis e as funções payoff são continuamente diferenciáveis. Nós demonstramos a ineficiência do equilíbrio local fraco no sentido de Pareto / In this work, applying methods of Algebraic Topology, we obtain new versions of the Nash equilibrium theorem. We define a concept of local equilibrium for non-cooperative games, the socalled weak local equilibrium, and we prove its existence when the spaces of strategies are differentiable manifolds and the payoff functions are continuously differentiable. We prove the ineffciency of weak local equilibrium in the Pareto sense
|
Page generated in 0.0534 seconds