Spelling suggestions: "subject:"femme dde zéro"" "subject:"femme dde héros""
1 |
Minorations explicites de formes linéaires en deux logarithmesGouillon, Nicolas 04 December 2003 (has links) (PDF)
Les minorations de combinaison linéaire, à coefficients entiers, de logarithmes de nombres algébriques constituent un outil important dans la résolution effective de certaines classes d'équations diophantiennes. Le cas de deux logarithmes est à cet égard particulièrement utile. Nous utilisons ici, pour l'obtention de ces minorations, la méthode dite de Schneider avec multiplicité. La démonstration repose sur l'utilisation des déterminants d'interpolation et d'un lemme de zéros approprié à ce cadre. Le lemme de zéros exploité ici, dont la preuve reprend la construction originelle de D.W. Masser, s'avère dans notre cas plus efficace que les résultats généraux précédemment employés. Nous utilisons ensuite une méthode standard pour encadrer un déterminant non nul, afin d'obtenir une inégalité fondamentale faisant intervenir de nombreux paramètres arbitraires. Nous déduisons de cette dernière une liste de minorations totalement explicites de formes linéaires de logarithmes.
|
2 |
Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienneKhémira, Samy 20 June 2005 (has links) (PDF)
Cette thèse aborde des sujets d'approximation diophantienne et de transcendance liés aux fonctions exponentielles. Il est tout d'abord établit des liens entre les coefficients d'approximants de Hermite-Padé, ceux de polynômes d'interpolation de Hermite et certains cofacteurs d'un déterminant de Vandermonde généralisé. Nous utilisons ensuite la notion de hauteur d'une matrice (que nous majorons grâce aux liens précédemment fournis) afin de donner une nouvelle démonstration de la transcendance de $e$. Ces résultats nous permettent finalement d'obtenir de nouveaux énoncés d'approximation diophantienne tels que la minoration de la distance de l'exponentielle d'un nombre algébrique (de hauteur absolue logarithmique de Weil bornée) à un autre nombre algébrique (lui aussi de hauteur absolue logarithmique de Weil bornée) en fonction de ces mêmes bornes. Il est ensuite donné, pour différentes valeurs de nombres rationnels $a$, quelques estimations remarquables telles que le minimum, sur l'ensemble des entiers non nuls $b$ et $c$, de la distance $|e^(b)-a^(c)|$.
|
Page generated in 0.0845 seconds