• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 8
  • 7
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 148
  • 111
  • 48
  • 46
  • 43
  • 36
  • 34
  • 34
  • 33
  • 31
  • 31
  • 27
  • 24
  • 17
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structure of dark matter in galaxies

Trott, Cathryn Margaret Unknown Date (has links) (PDF)
The origin, nature and distribution of dark matter in the universe form some of the biggest questions in modern astrophysics. Dark matter is distributed on a wide range of scales in the universe. This thesis concentrates on galactic scales, attempting to lower the veil and probe the structure of dark matter in galaxies. (For complete abstract open document)
22

Stellar-to-halo mass relation of cluster galaxies

Niemiec, Anna, Jullo, Eric, Limousin, Marceau, Giocoli, Carlo, Erben, Thomas, Hildebrant, Hendrik, Kneib, Jean-Paul, Leauthaud, Alexie, Makler, Martin, Moraes, Bruno, Pereira, Maria E. S., Shan, Huanyuan, Rozo, Eduardo, Rykoff, Eli, Van Waerbeke, Ludovic 10 1900 (has links)
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: Assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar-to-halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the Dark Energy Survey (DES) science verification archive, the Canada-France-Hawaii Lensing Survey (CFHTLenS) and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we find a stellar-to-halo mass relation in good agreement with the theoretical expectations from Moster et al. for central galaxies. In the centre of the cluster, we find that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this finding as further evidence for tidal stripping of dark matter haloes in high-density environments.
23

A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for H0

Wilson, Michelle L., Zabludoff, Ann I., Keeton, Charles R., Wong, Kenneth C., Williams, Kurtis A., French, K. Decker, Momcheva, Ivelina G. 21 November 2017 (has links)
Strong gravitational lensing provides an independent measurement of the Hubble parameter (H-0). One remaining systematic is a bias from the additional mass due to a galaxy group at the lens redshift or along the sightline. We quantify this bias for more than 20 strong lenses that have well-sampled sightline mass distributions, focusing on the convergence kappa and shear gamma. In 23% of these fields, a lens group contributes >= 1% convergence bias; in 57%, there is a similarly significant line-of-sight group. For the nine time-delay lens systems, H-0 is overestimated by 11(-2)(+3)% on average when groups are ignored. In 67% of fields with total kappa >= 0.01, line-of-sight groups contribute greater than or similar to 2x more convergence than do lens groups, indicating that the lens group is not the only important mass. Lens environment affects the ratio of four (quad) to two (double) image systems; all seven quads have lens groups while only 3 of 10 doubles do, and the highest convergences due to lens groups are in quads. We calibrate the gamma-kappa relation: log(kappa(tot)) = (1.94 +/- 0.34)log(gamma(tot)) + (1.31 +/- 0.49) with an rms scatter of 0.34 dex. Although shear can be measured directly from lensed images, unlike convergence, it can be a poor predictor of convergence; for 19% of our fields, kappa is greater than or similar to 2 gamma. Thus, accurate cosmology using strong gravitational lenses requires precise measurement and correction for all significant structures in each lens field.
24

Identifying Low-Amplitude Pulsating Stars Through Microlensing Observations

Sajadian, Sedighe, Ignace, Richard, Neilson, Hilding 01 November 2021 (has links)
One possibility for detecting low-amplitude pulsational variations is through gravitational microlensing. During a microlensing event, the temporary brightness increase leads to improvement in the signal-to-noise ratio, and thereby better detectability of pulsational signatures in light curves. We explore this possibility under two primary considerations. The first is when the standard point-source and point-lens approximation applies. In this scenario, dividing the observed light curve by the best-fitted microlensing model leads to residuals that result in pulsational features with improved uncertainties. The second is for transit events (single lens) or caustic crossing (binary lens). The point-source approximation breaks down, and residuals relative to a simple best-fitted microlensing model display more complex behaviour. We employ a Monte Carlo simulation of microlensing of pulsating variables toward the Galactic bulge for the surveys of OGLE and of KMTNet. We demonstrate that the efficiency for detecting pulsational signatures with intrinsic amplitudes of <0.25 mag during single and binary microlensing events, at differences in χ2 of Δχ2 > 350, is $\sim \!50\!-\!60{{\ \rm per\ cent}}$. The maximum efficiency occurs for pulsational periods P ≃ 0.1-0.3 d. We also study the possibility that high-magnification microlensing events of non-radially pulsating stars could be misinterpreted as planetary or binary microlensing events. We conclude that small asymmetric features around light curve peaks due to stellar pulsations could be misdiagnosed with crossing (or passing close to) small caustic curves.
25

Detection of Background Galaxy Clusters in the Local Volume Complete Cluster Survey for Weak Lensing Measurements

Domke, Sarah 15 May 2023 (has links)
No description available.
26

The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744

Jauzac, M., Eckert, D., Schwinn, J., Harvey, D., Baugh, C. M., Robertson, A., Bose, S., Massey, R., Owers, M., Ebeling, H., Shan, H. Y., Jullo, E., Kneib, J.-P., Richard, J., Atek, H., Clément, B., Egami, E., Israel, H., Knowles, K., Limousin, M., Natarajan, P., Rexroth, M., Taylor, P., Tchernin, C. 21 December 2016 (has links)
We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z = 0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e. at R < 1 Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark matter haloes are detected with a significance of at least 5 sigma and feature masses ranging from 0.5 to 1.4 x 10(14) M-circle dot within R < 150 kpc. Merten et al. and Medezinski et al. substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al., we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the Millennium XXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to Lambda cold dark matter, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the subhaloes finders. We discuss implications of Abell 2744 for the plausibility of different dark matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of sigma(DM) < 1.28 cm(2) g(-1) (68 per cent CL), in good agreement with previous results from Harvey et al.
27

Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604

Wong, Kenneth C., Raney, Catie, Keeton, Charles R., Umetsu, Keiichi, Zabludoff, Ann I., Ammons, S. Mark, French, K. Decker 31 July 2017 (has links)
We present a combined strong and weak lensing analysis of the J085007.6+360428 (J0850) field, which contains the massive cluster Zwicky 1953. This field was selected for its high projected concentration of luminous red galaxies. Using Subaru/Suprime-Cam BVR(c)I(c)i'z' imaging and MMT/Hectospec spectroscopy, we first perform a weak lensing shear analysis to constrain the mass distribution in this field, including the cluster at z = 0.3774 and a smaller foreground halo at z = 0.2713. We then add a strong lensing constraint from a multiply imaged galaxy in the imaging data with a photometric redshift of z approximate to 5.03. Unlike previous cluster-scale lens analyses, our technique accounts for the full three-dimensional mass structure in the beam, including galaxies along the line of sight. In contrast with past cluster analyses that used only lensed image positions as constraints, we use the full surface brightness distribution of the images. This method predicts that the source galaxy crosses a lensing caustic, such that one image is a highly magnified "fold arc" that could be used to probe the source galaxy's structure at ultra-high spatial resolution (< 30 pc). We calculate the mass of the primary cluster to be M-vir = 2.93(-0.65)(+0.71) x 10(15) M-circle dot. with a concentration of C-vir = 3.46(-0.59)(+0.70), consistent with the mass-concentration relation of massive clusters at a similar redshift. The large mass of this cluster makes J0850 an excellent field for leveraging lensing magnification to search for high-redshift galaxies, competitive with and complementary to that of well-studied clusters such as the HST Frontier Fields.
28

Constraining Cosmology with Weak Gravitational Lensing

Murphy, Kellen J. January 2013 (has links)
No description available.
29

The gravitationally lensed galaxy IRAS FSC10214+4724

Deane, Roger Paul January 2013 (has links)
We present a multi-wavelength analysis of IRAS FSC10214+4724 from radio to X-ray wavelengths. This is a gravitationally lensed galaxy at a redshift z=2.3 (3 Gyr after the Big Bang) which hosts prodigious star formation as well as an obscured active nucleus. We derive a new lens model for the system employing a Bayesian Markov Chain Monte Carlo algorithm with extended-source, forward ray-tracing. An array of spatially resolved maps (radio, millimetre, near-infrared, optical) trace different physical components which enables a high resolution, multi-wavelength view of a high-redshift galaxy beyond the capabilities of current telescopes. The spatially-resolved molecular gas total intensity and velocity maps reveal a reasonably ordered system, however there is evidence for minor merger activity. We show evidence for an extended, low-excitation gas reservoir that either contains roughly half the total gas mass or has a different CO-to-H_2 conversion ratio. Very Long Baseline Interferometry (VLBI) is used to detect what we argue to be the obscured active nucleus with an effective angular resolution of <50 pc at z=2.3. The source plane inversion places the VLBI detection to within milli-arcseconds of the modeled cusp caustic, resulting in a very large magnification (mu > 70) which is over an order of magnitude larger than the derived co magnification. This implies an equivalent magnification difference between the starburst and AGN components, yielding significant distortion to the global continuum spectral energy distribution (SED). A primary result of this work is therefore the demonstration that emission regions of differing size and position within a galaxy can experience significantly different magnification factors (> 1 dex) and therefore distort our view of high-redshift, gravitationally lensed sources. This not only raises caution against unsophisticated uses of IRAS FSC10214+4724 as an archetype high-redshift Ultra-Luminous Infra-Red Galaxy (ULIRG), but also against statistical deductions based on samples of strong lenses with poorly constrained lens models and spatially-unresolved detections. Analogous to the continuum SED distortion quantified in this thesis, we predict a distortion of the CO spectral line energy distribution of IRAS FSC10214+4724 where higher order J lines, that are increasingly excited by the AGN and shock heating from the central starburst, will be preferentially lensed owing to their smaller solid angles and closer proximity to the AGN, and therefore the cusp of the caustic. This distortion is predicted to affect many high redshift lenses and will be tested most synergistically by the Jansky Very Large Array (JVLA) and the Atacama Large Millimetre Telescope (ALMA).
30

Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

Kirk, D., Omori, Y., Benoit-Lévy, A., Cawthon, R., Chang, C., Larsen, P., Amara, A., Bacon, D., Crawford, T. M., Dodelson, S., Fosalba, P., Giannantonio, T., Holder, G., Jain, B., Kacprzak, T., Lahav, O., MacCrann, N., Nicola, A., Refregier, A., Sheldon, E., Story, K. T., Troxel, M. A., Vieira, J. D., Vikram, V., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Becker, M. R., Benson, B. A., Bernstein, G. M., Bernstein, R. A., Bleem, L. E., Bonnett, C., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carlstrom, J. E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D'Andrea, C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Eifler, T. F., Evrard, A. E., Flaugher, B., Frieman, J., Gerdes, D. W., Goldstein, D. A., Gruen, D., Gruendl, R. A., Honscheid, K., James, D. J., Jarvis, M., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Martini, P., Melchior, P., Miller, C. J., Miquel, R., Nichol, R. C., Ogando, R., Plazas, A. A., Reichardt, C. L., Roodman, A., Rozo, E., Rykoff, E. S., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Simard, G., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Wechsler, R. H., Weller, J. 11 June 2016 (has links)
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

Page generated in 0.0814 seconds