• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 25
  • 22
  • 19
  • 19
  • 17
  • 16
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of Novel Cell Fate Control Gene Therapy for Applications in Cancer and Immune Disorders

Neschadim, Anton 11 January 2012 (has links)
Cellular therapies rely on the delivery of therapeutic cells into patients, but their safety can be compromised by the manipulation of cells ex vivo or their placement outside of their natural context in vivo. Cell Fate Control Gene Therapy (CFCGT) offers the possibility of establishing pharmacological controls over gene-modified cells (GMCs) with regards to their proliferation, differentiation, or function. In its simplest form, 'suicide' gene therapy (SGT), stable introduction of a 'suicide' gene that can activate a non-toxic prodrug establishes control over the survival of GMCs. Current SGT modalities are sub-optimal in clinical setting. To overcome the many limitation of current strategies, we have developed a next-generation CFCGT approach based on the active site-engineered variants of human deoxyCytidine Kinase (dCK), which enable robust activation of multiple Nucleoside Analogue (NA)-based prodrugs, act early in the pathway enabling rapid accumulation of activated NAs in target cells, and also provide the capabilities for the direct imaging of GMCs. Stable introduction of dCK variants into target cells by means of Lentiviral (LV) gene transfer significantly increases their sensitivity to multiple prodrugs. Our dCK variant with only two active site amino acid substitutions is expected to be non-immunogenic yet capable of specifically activating deoxythymidine- and deoxyuridine-based NAs that are not substrates for the wild-type enzyme, such as bromovinyldeoxyuridine (BVdU) and L-deoxythymidine (LdT). We show here that dCK can be used for controlling the survival of GMCs, in cell lines and primary cells in vitro and in a murine xenogeneic transplant models in vivo. To characterize dCK/prodrug-mediated killing mechanisms in GMCs, we have examined the levels of active metabolites in cells and the cellular pathways they antagonize. We describe here the experimental basis for the application of this novel CFCGT in bone marrow transplantation for management of Graft-versus-Host Disease (GvHD) and in enhancing chemotherapy in direct treatment of tumors. In summary, we have developed a novel and robust strategy for effective CFCGT that addresses the many shortcomings of existing modalities. Future studies will validate this novel system in a variety of primary cells and animal disease models, including models of hematopoietic transplantation and ES/iPS-based cell therapies.
22

Enhancement of lentiviral vector production through alteration of virus-cell interactions

Gelinas, Jean-Francois January 2016 (has links)
Gene therapy is the introduction or alteration of genetic material with the intention to treat disease. To support this aim, viruses have been modified, with elements linked to viral pathogenicity removed from their genome and replaced by the genetic material to be delivered. Gene therapy vectors based on lentiviruses have many advantages, such as the ability to transduce non-dividing cells and to target specific cell types via pseudotyping. They have been successfully used in ex vivo clinical trials for several haematopoietic stem cell disorders. Lentiviral vectors, however, suffer from substantially lower titres than the more popular adeno-associated virus (AAV)-based vectors and therefore have limited applicability for in vivo gene therapy which requires much greater quantities of virus. The main aim of this thesis was to investigate strategies to improve lentiviral vector productivity during manufacture, in order to increase the likelihood of lentiviruses being adopted for disease treatment. Initial experiments were based on the lentiviral vector manufacturing process currently being developed by the United Kingdom Cystic Fibrosis Gene Therapy Consortium for the generation of highly concentrated, purified lentivirus for clinical use. Supplementation of FreeStyle 293 Expression Medium used during upstream processing was attempted, but none of the assessed supplements led to significant increases in lentiviral vector production. Investigation into intrinsic immunity to viral infection indicated that over-expression of the protein kinase RNA-activated (PKR) led to lower production titres, but over-expression of its inhibitors was not successful at increasing titres. The focus then shifted to reducing, or 'knocking-down', inhibitory factors present in the host cells, which could adversely affect viral titres. Investigation of the published HIV-1 literature revealed a possible 152 candidate inhibitory factors described as having a negative impact on HIV-1 replication in the late stages of the life cycle of the virus. A novel siRNA screen was developed to assess the effect of ‘knock-down' of inhibitory factors on lentiviral vector titre. Application of the screen to 89 candidate inhibitory factors identified nine genes which, when knocked-down, resulted in increased lentiviral vector production by more than 40%. Further work will be necessary to understand the role of the inhibitory factors in lentiviral vector production, but novel cell lines in which genes encoding these factors have been permanently deleted from producer cells could lead to higher titres, reducing costs in the manufacture of lentiviral vectors and making in vivo gene therapy more feasible from a health economics perspective.
23

Developing novel techniques for primate neural network analyses by retrograde gene transfer with viral vectors / ウイルスベクターによる逆行性遺伝子導入を利用した霊長類の神経ネットワーク解析のための新規技術開発

Tanabe, Soshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22297号 / 理博第4611号 / 新制||理||1661(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 高田 昌彦, 教授 中村 克樹, 教授 濱田 穣 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
24

Advancing the Safety of Lentiviral Vector Mediated Gene Therapy

Shaw, Aaron Marcus 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lentiviral vector mediated gene therapy has made great strides in recent years with several successful clinical trials. However, adverse events encountered with some early trials have highlighted the necessity to improve upon its safety. Improvements can range from early steps in vector production to evaluation of insertion sites post-transduction. We have evaluated an FDA approved DNase for removal of residual plasmid DNA during vector production, developed novel non-integrating lentiviral vectors and employed modified insertion site analysis post-transduction to improve the safety of lentiviral vector mediated gene therapy. To prevent the exposure of gene therapy patients to HIV-1 DNA it is essential to remove residual plasmid DNA during vector production. We evaluated a recombinant human DNase which has been FDA approved for use in patients as an alternative to a bacterially derived DNase. Our results indicate this DNase is an effective alternative with a potentially safer profile for use in patients. The ability of lentiviral vectors to stably integrate their genome into a host cell’s DNA can have negative side-effects due to the risk of insertional mutagenesis. Non-integrating lentiviral vectors have been developed to alleviate this risk in applications where integration is not necessary. However, a low frequency of illegitimate integration persists when using these vectors. We have developed a novel non-integrating vector mutation and evaluated the efficacy of combining it with other mutations for reducing the frequency of illegitimate integration. We demonstrate that combining mutations that inhibit integration can further reduce the frequency of illegitimate integration. Several methodologies have been developed for evaluating the insertion sites of normal integrating lentiviral vectors. Illegitimate integration by non-integrating vectors demonstrates mechanisms which result in insertions and/or deletions at the vector-genome junction. Current methods lack the sensitivity to account for these variables in a high-throughput manner. We have adapted modifications to current methods to improve the capture of these variable insertion sites for analysis. The results of these studies improve the safety of lentiviral vector mediated gene therapy by improving the purity of the vector product, providing a safer vector for non-integrase mediated applications, and allowing more sensitive analysis of insertion sites post-transduction.
25

A systemically-delivered stem cell therapy for dry age related macular degeneration

Pay, Samantha Louise 27 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Dry age-related macular degeneration (AMD) is a progressive neurodegenerative disorder characterized by geographical atrophy of the retinal pigment epithelium (RPE), causing irreversible central vision loss. Systemically-delivered bone marrow-derived cells (BMDCs), programmed to RPE-like cells via expression of human RPE65, regenerate damaged RPE and preserve vision in murine models of retinal degeneration. RPE65 rapidly activates adenylate cyclase (AC), which then activates endogenous Rpe65 and RPE-associated marker Cralbp. Previous studies expressed RPE65 from an integrating lentiviral vector (ILV), which is an unnecessary safety risk due to the potential for insertional mutagenesis, as long- term expression of RPE65 is not required for BMDC programming. Here, we developed a 3rd generation integrase-defective lentiviral vector (IDLV) for programming both murine and human BMDCs to RPE-like cells, reducing insertional mutagenesis risk and expanding the protocol to include human cells. We enhanced IDLV3-RPE65 infection of murine and human BMDCs by preloading concentrated vector on RetroNectin at MOI 50, and infecting with low-speed centrifugation, increasing RPE65 mRNA levels from ~12-fold to ~25-fold (p<0.05). IDLV3-RPE65 infection initiates expression of endogenous Rpe65 mRNA expression in murine BMDC and Cralbp/CRALBP mRNA in both murine and human BMDCs, indicating programming to RPE-like cells. Inhibiting AC in RPE65infected BMDCs abrogated expression of the endogenous genes, confirming the role of AC activation in programming. Critically, IDLV3-RPE65-infected murine BMDCs are recruited to and incorporate into to the RPE layer, and preserve vision in murine models of retinal degeneration. We conclude that BMDCs programmed with IDLV3-RPE65 successfully prevent retinal degeneration progression and are appropriate for testing in human cells, with a view to move into human clinical trial for the treatment of dry AMD. This approach significantly increases the safety of the therapy and is, to the best of our knowledge, the first application of a single IDLV in the generation of therapeutic cells from adult stem cells.
26

Évaluation de nouveaux pseudotypes de vecteurs lentiviraux pour le transfert de gènes dans les cellules hématopoiétiques / Evaluation of new lentiviral vector pseudotypes for gene transfer into hematopoietic cells

Gagnepain, Anaïs 15 October 2014 (has links)
Le transfert de gènes dans les cellules souches hématopoïétiques par des vecteurs lentiviraux s’inscrit dans les protocoles actuels de traitement par thérapie génique de plusieurs maladies monogéniques (B-thalassémie, Adrénoleucodystrophie, SCID…). De même, le transfert de gènes dans les lymphocytes T et B ouvre des perspectives tant au niveau de la thérapie génique que pour l’immunothérapie. Nous avons mis au point des vecteurs lentiviraux pseudotypés par des glycoprotéines chimérique (BaEV/TR) et mutante (BaEVRLess) du rétrovirus endogène de babouin. Nous avons montré que ces nouveaux vecteurs peuvent transduire de manière plus efficace les cellules souches hématopoïétiques stimulées et quiescentes que les vecteurs pseudotypés par la glycoprotéine du virus de la stomatite vésiculaire (VSV-G). Il en est de même pour les vecteurs développés récemment et pseudotypés par les Glycoprotéines H et F du virus de la rougeole. Nous avons aussi comparé la capacité de ces derniers vecteurs à ceux pseudotypés par les glycoprotéines BaEV/TR et BaEVRLess dans le transfert de gènes dans les lymphocytes B et T ainsi que dans l’ensemble des cellules de la lignée T. Nous sommes désormais en mesure de proposer des vecteurs adaptés au transfert de gènes à chaque étape de la différenciation des cellules CD34+ en thymocytes ainsi qu’en lymphocytes T matures. Ceci pourrait permettre de proposer de nouveaux protocoles cliniques en thérapie génique avec une co-transplantation de cellules souches génétiquement modifiées et de cellules T différenciées à partir de ces cellules. Ceci permettrait notamment de réduire les phases d’aplasie actuellement nécessaires pour la greffe de cellules souches. / Lentiviral vectors and their ability to transfer gene into hematopoietic stem cells are currently evaluated for the cure of several single-gene diseases (eg : B-thalassemia, Adrenoleucodystrophy, SCID). Likewise, gene transfer into B and T lymphocytes is of major interest in gene therapy and immunotherapy. We engineered new lentiviral vectors pseudotyped by some chimeric (BaEV/TR) and mutant (BaEVRLess) glycoproteins from the baboon endogenous retrovirus. We demonstrated that these new vectors can transduce more efficiently resting and mild stimulated hematopoietic stem cells than obtained with lentivectors pseudotyped by the glycoprotein G from the vesicular stomatitis virus (VSV-G). It is the same with the recently developed lentiviral vectors pseudotyped by the H and F glycoprotein from measles virus (H/F-LVs). We also compared the ability of the H/F-LVs with the BaEV/TR and BaEVRLess lentiviral vector pseudotype to transfer genes into B and T lymphocytes and into the whole T lineage. From now on, we are able to propose adapted vectors for gene transfer at each stage of differentiation from CD34+ cells to thymocytes and mature T cells. This could allow us to propose some new clinical protocols in gene therapy with a co-transplantation of genetically modified stem cells and their differentiated T progenitors in order to reduce the aplasia stage induced by current transplantation protocols.
27

Clonagem e expressão de fator IX recombinante em células 293T e SK-Hep-1 e caracterização das células produtoras / Cloning and expression of recombinant factor IX in 293T and SK-Hep-1 cells and characterization of producing cells

Bomfim, Aline de Sousa 27 September 2013 (has links)
O fator IX (FIX) da coagulação sanguínea é uma proteína dependente de vitamina K de grande valor farmacêutico no tratamento da Hemofilia B, o qual é baseado na administração do fator de coagulação derivado de plasma humano ou da proteína recombinante produzida em células murinas. A terapia baseada nestas abordagens apresenta alto custo e está associada às contaminações com vírus e príons, além do desenvolvimento de inibidores de FIX. Esses efeitos aumentam o risco de morbidade e mortalidade relacionadas às hemorragias. Neste trabalho, clonamos o cDNA do FIX em um vetor lentiviral e avaliamos a expressão da proteína recombinante em duas linhagens celulares humanas. A clonagem do cDNA do FIXh no vetor de expressão lentiviral 1054 foi confirmada através da análise com enzimas de restrição específicas obtendo-se as bandas esperadas de 1407 pb e 10054 pb visualizadas em gel de agarose. As linhagens celulares 293T e SK-Hep-1 foram transduzidas com o vetor lentiviral 1054-FIX gerado em nosso laboratório e as células que apresentaram maior expressão de EGFP foram selecionadas e separadas por citometria de fluxo. A quantificação da expressão de FIXrh foi realizada por ensaios de ELISA e cromogênico. A quantificação de FIXrh total foi de 500 ng/106 células para a linhagem 293T e 803 ng/106 células para a linhagem SK-Hep-1. A atividade biológica específica de FIXh nas células 293T e SK-Hep-1 foi 0,047 UI/106 células e 0,186 UI/106 células, respectivamente. Com o intuito de avaliar o perfil de produção de FIXrh ativo ao longo do tempo, foi realizado um acompanhamento de 180 dias, no qual foi observado que a linhagem SK-Hep-1 cessou a expressão de FIX, enquanto as células 293T mantiveram a expressão durante o período. O FIXrh foi caracterizado por western blot confirmando a presença de uma banda imunoreativa esperada de 57 kDa. As linhagens 293T e SK-Hep-1 apresentaram 7,67 e 17 cópias do vetor inserido/célula, respectivamente. Considerando a importância do processo de ?-carboxilação, foi realizada uma análise da expressão gênica dos genes envolvidos neste processo, tais como o VKORC1, ?-carboxilase e o inibidor calumenina, nas linhagens celulares. Os resultados demonstraram razões elevadas entre os genes VKORC1 e calumenina e VKORC1 e ?-carboxilase nas duas linhagens. A cinética de crescimento das células foi realizada por um período de 7 dias apresentando diferenças significativas entre as células SK-Hep-1 transduzidas e não transduzidas, enquanto que as células 293T não presentaram diferenças estatísticas no crescimento celular. A suplementação do meio de cultura com íons Ca+2 e Mg+2 foi testada para avaliar sua influência na expressão de FIXrh ativo. As células 293T apresentaram melhor desempenho nas concentrações de 0,5 mmol/L de Ca+2 e 1,0 mmol/L de Mg+2 e as células SK-Hep-1 no meio de cultura não suplementado. Nossos dados indicam que a linhagem hepática SK-Hep-1 é a melhor produtora de FIXrh funcional e as comparações realizadas entre os dois tipos celulares são importantes na caracterização do comportamento de linhagens geneticamente modificadas voltadas para a expressão de proteínas recombinantes heterólogas e abre novos caminhos para futuros estudos que visam o melhoramento da produção desse tipo de proteína. / Blood coagulation factor IX is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the treatment of Hemophilia B which is based on the plasma-derived coagulation factors or recombinant protein produced in murine cells. Coagulation therapy based on these approaches has high costs and is closely associated with prion and virus contamination besides the FIX inhibitors development. These effects increase the risk for bleeding-related morbidity and mortality. The purpose of this study was to clone hFIX into a lentiviral vector and evaluate the expression of the recombinant protein in two human cell lines. The cloning of the hFIX cDNA into 1054 lentiviral expression vector was confirmed by enzymatic restriction obtaining the expected 1407 bp and 10054 bp bands in agarose gel. The 293T and SK-Hep-1 cell lines have been stable transduced with 1054-FIX lentiviral vector generated in our laboratory and the cells with higher expression of EGFP were selected and separated by flow cytometry. The quantification of the expression of rhFIX was performed by ELISA and chromogenic assays. The concentration of total rhFIX was 500 ng/106 cells in 293T cell line and 803 ng/106 cells in SK-Hep-1 cell line. The biological activity of FIX secreted by 293T and SK-Hep-1 was 0,047 UI/106 cells and 0,186 UI/106 cells, respectively. In order to evaluate the active rhFIX production profile over time, we conducted a monitoring of 180 days, which was noted that the SK-Hep-1 cell line ceased FIX expression, while 293T cells maintained the expression during this period. rhFIX was characterized by western blot analysis confirming the presence of a expected 57 kDa immunereactive band. The 293T and SK-Hep-1 cell lines showed 7.67 and 17 integrated vector copies/cell, respectively. Considering the importance of the ?-carboxylation process, we performed a gene expression analysis of genes involved in this process, such as VKORC1, ?-carboxylase and calumenin, in cell lines. The results showed high ratios among the genes VKORC1 and calumenin and among VKORC1 and ?-carboxylase in both cell lines. The cell growth kinetics was performed by a 7-day period, showed significant differences between SK-Hep-1 transduced cells and non-transduced cells, whereas 293T cells showed no difference in cell growth. Enrichment of culture medium with Ca +2 and Mg +2 ions was tested to evaluate its influence on the expression of active FIX. 293T cells showed better performance in 0.5 mmol/L Ca+2 and 1.0 mmol/L Mg +2 concentrations and SK-Hep-1 cells in culture medium control. Our data indicate that transduced SK-Hep-1 cells are the best producer of functional rhFIX, and comparisons between these two cell lines are important in characterizing the behavior of genetically modified cell lines focused on the heterologous expression of recombinant proteins and opens new avenues for future studies aimed at improving the production of this type of protein.
28

The development of HIV-1 derived gene transfer technology: optimisation of vector safety, processing and production.

Koldej, Rachel Marie January 2008 (has links)
Vectors derived from Human Immunodeficiency Virus type 1 (HIV-1) are being widely developed for gene therapy applications, principally because they are able to transduce both dividing and non-dividing cells and result in stable, long term gene expression. However, these vectors are difficult to produce in high titres and sufficient volumes for large scale experiments and clinical application. Therefore, an investigation into methods to improve the production of HIV-1 derived gene transfer vectors was undertaken. One factor that limits the production of recombinant virus is the amount of viral genomic RNA available for packaging into virions. Therefore, a transfer vector was modified with the aim of increasing the amount of genomic RNA produced. Substitution of the polyadenylation (pA) signal, mutation splice donor sites and removal of unnecessary sequences were all examined. pA signal readthrough was quantified to determine the effect of these modifications on the rate of pA signal readthrough. Insertional mutagenesis and vector mobilisation are recognised risk factors with all integrating vectors. Self inactivating (SIN) vectors, which contain a deletion of U3 sequences in the 3’ LTR, demonstrate a reduced rate of mobilisation. Transduction with these vectors results in a provirus containing no viral promoter elements, with transcription of the transgene being controlled from an internal promoter. However, LTR repair of SIN vectors occurs at an appreciable frequency. Therefore, the extent of this deletion was maximised and the effect on the frequency of the repair examined. The production of lentiviral gene therapy vectors by large-scale transient transfection is both time consuming and technically difficult. Therefore, methods to increase the scale of production without compromising virus titre were developed. This resulted in fewer transfections and less handling of the cells when making virus on a large scale (3-4 L). In order to process the virus on this scale in a single day (i.e. 8 hours), new concentration and purification methods were established. The protocol consisted of low speed centrifugation, 0.45 μm filtration, 750 kDa ultrafiltration, 0.8 μm filtration and ultracentrifugation. However, the use of ultracentrifugation means that this protocol is not amenable to further scale up. Therefore, the replacement of the ultracentrifugation step with anion exchange was investigated. A number of different resins and anion exchange devices were investigated, two of which show promise for large scale purification of HIV-1 derived gene transfer vectors. In an ideal world, HIV-1 derived gene transfer vectors would be produced using stable packaging cell lines engineered to produce the desired virus. However, previous attempts to produce such a cell line with the desired properties have had limited success and have generally used outdated helper systems. Therefore, in an attempt to combine the efficiency advantages of having a single helper plasmid with the safety advantages of expressing each protein separately, a single packaging construct that contained separate transcription units for each of the required proteins was produced. Transcription of cyotoxic proteins was controlled by inducible promoters. Initial results suggest that such a system is technically feasible but that further work is required to optimise the expression of helper functions. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1309550 / Thesis (Ph.D.) -- School of Paediatrics and Reproductive Health, 2008
29

Développement d'un vecteur lentiviral ciblant les astrocytes et mise en application dans l'étude des transporteurs au glutamate GLAST et GLT-1

Colin, Angélique 17 December 2008 (has links) (PDF)
Les astrocytes sont des cellules gliales jouant un rôle primordial dans le fonctionnement cérébral. Ils remplissent de nombreuses fonctions allant de la régulation de l'homéostasie ionique, à la modulation de la transmission synaptique en passant par la régulation du métabolisme énergétique. Les transporteurs astrocytaires au glutamate GLAST et GLT-1 tiennent un rôle particulièrement important dans ces fonctions astrocytaires. La recapture du glutamate libéré dans la synapse module la neurotransmission et évite la stimulation excessive des récepteurs glutamatergiques qui peut induire des phénomènes d'excitotoxicité provoquant la mort des neurones. Le couplage neurométabolique entre astrocytes et neurones repose également sur l'activité de ces transporteurs. De nombreuses données indiquent que des déficits des transporteurs au glutamate sont impliqués dans la plupart des maladies neurodégénératives. Les astrocytes et les transporteurs au glutamate représentent ainsi de potentielles cibles thérapeutiques dans le cadre des maladies neurodégénératives. L'étude de ces interactions neurones-astrocytes, en particulier sur des modèles in vivo, nécessite des outils particuliers permettant de disséquer le rôle de chaque type cellulaire. Cependant, il existe peu d'outils spécifiques et efficaces pour cibler les astrocytes in vivo. Notre objectif a été de développer un nouveau vecteur viral permettant une transduction spécifique des astrocytes in vivo, avec une efficacité importante et pouvant être utilisé dans l'ensemble du cerveau avec de nombreux transgènes. Au cours de ce travail nous avons développé trois voies de recherche. Ainsi, nous avons modifié l'enveloppe du vecteur et tester trois glycoprotéines d'enveloppe, VSV, Mokola et Rabies. Nous avons également utilisé trois promoteurs différents, PGK, CMV et EAAT1 afin de moduler l'expression du transgène dans les astrocytes. Et enfin, nous avons développé une nouvelle méthode de régulation post-transcriptionnelle utilisant les microARN. Nos résultats permettent de conclure qu'un vecteur lentiviral avec l'enveloppe Mokola, contenant le promoteur PGK et des cibles de microARN spécifiques des neurones est un outil efficace pour cibler les astrocytes in vivo. Nous avons utilisé ce nouvel outil pour surexprimer les transporteurs astrocytaires au glutamate (GLAST et GLT-1) et pour inhiber leur expression grâce aux techniques de « RNA silencing ». La surexpression du transporteur GLAST permet une neuroprotection significative en condition excitotoxique tandis que l'inhibition de GLT-1 induit une diminution du métabolisme cérébral. Ces résultats préliminaires apportent la preuve de principe de l'efficacité de notre outil in vivo et confirment le rôle central des transporteurs astrocytaires. Il est ainsi possible d'anticiper que ce nouvel outil permettra à la fois une meilleure compréhension du fonctionnement des astrocytes in vivo et qu'il peut représenter un vecteur de choix dans la perspective d'une thérapie génique ciblant ces cellules.
30

Clonagem e expressão de fator IX recombinante em células 293T e SK-Hep-1 e caracterização das células produtoras / Cloning and expression of recombinant factor IX in 293T and SK-Hep-1 cells and characterization of producing cells

Aline de Sousa Bomfim 27 September 2013 (has links)
O fator IX (FIX) da coagulação sanguínea é uma proteína dependente de vitamina K de grande valor farmacêutico no tratamento da Hemofilia B, o qual é baseado na administração do fator de coagulação derivado de plasma humano ou da proteína recombinante produzida em células murinas. A terapia baseada nestas abordagens apresenta alto custo e está associada às contaminações com vírus e príons, além do desenvolvimento de inibidores de FIX. Esses efeitos aumentam o risco de morbidade e mortalidade relacionadas às hemorragias. Neste trabalho, clonamos o cDNA do FIX em um vetor lentiviral e avaliamos a expressão da proteína recombinante em duas linhagens celulares humanas. A clonagem do cDNA do FIXh no vetor de expressão lentiviral 1054 foi confirmada através da análise com enzimas de restrição específicas obtendo-se as bandas esperadas de 1407 pb e 10054 pb visualizadas em gel de agarose. As linhagens celulares 293T e SK-Hep-1 foram transduzidas com o vetor lentiviral 1054-FIX gerado em nosso laboratório e as células que apresentaram maior expressão de EGFP foram selecionadas e separadas por citometria de fluxo. A quantificação da expressão de FIXrh foi realizada por ensaios de ELISA e cromogênico. A quantificação de FIXrh total foi de 500 ng/106 células para a linhagem 293T e 803 ng/106 células para a linhagem SK-Hep-1. A atividade biológica específica de FIXh nas células 293T e SK-Hep-1 foi 0,047 UI/106 células e 0,186 UI/106 células, respectivamente. Com o intuito de avaliar o perfil de produção de FIXrh ativo ao longo do tempo, foi realizado um acompanhamento de 180 dias, no qual foi observado que a linhagem SK-Hep-1 cessou a expressão de FIX, enquanto as células 293T mantiveram a expressão durante o período. O FIXrh foi caracterizado por western blot confirmando a presença de uma banda imunoreativa esperada de 57 kDa. As linhagens 293T e SK-Hep-1 apresentaram 7,67 e 17 cópias do vetor inserido/célula, respectivamente. Considerando a importância do processo de ?-carboxilação, foi realizada uma análise da expressão gênica dos genes envolvidos neste processo, tais como o VKORC1, ?-carboxilase e o inibidor calumenina, nas linhagens celulares. Os resultados demonstraram razões elevadas entre os genes VKORC1 e calumenina e VKORC1 e ?-carboxilase nas duas linhagens. A cinética de crescimento das células foi realizada por um período de 7 dias apresentando diferenças significativas entre as células SK-Hep-1 transduzidas e não transduzidas, enquanto que as células 293T não presentaram diferenças estatísticas no crescimento celular. A suplementação do meio de cultura com íons Ca+2 e Mg+2 foi testada para avaliar sua influência na expressão de FIXrh ativo. As células 293T apresentaram melhor desempenho nas concentrações de 0,5 mmol/L de Ca+2 e 1,0 mmol/L de Mg+2 e as células SK-Hep-1 no meio de cultura não suplementado. Nossos dados indicam que a linhagem hepática SK-Hep-1 é a melhor produtora de FIXrh funcional e as comparações realizadas entre os dois tipos celulares são importantes na caracterização do comportamento de linhagens geneticamente modificadas voltadas para a expressão de proteínas recombinantes heterólogas e abre novos caminhos para futuros estudos que visam o melhoramento da produção desse tipo de proteína. / Blood coagulation factor IX is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the treatment of Hemophilia B which is based on the plasma-derived coagulation factors or recombinant protein produced in murine cells. Coagulation therapy based on these approaches has high costs and is closely associated with prion and virus contamination besides the FIX inhibitors development. These effects increase the risk for bleeding-related morbidity and mortality. The purpose of this study was to clone hFIX into a lentiviral vector and evaluate the expression of the recombinant protein in two human cell lines. The cloning of the hFIX cDNA into 1054 lentiviral expression vector was confirmed by enzymatic restriction obtaining the expected 1407 bp and 10054 bp bands in agarose gel. The 293T and SK-Hep-1 cell lines have been stable transduced with 1054-FIX lentiviral vector generated in our laboratory and the cells with higher expression of EGFP were selected and separated by flow cytometry. The quantification of the expression of rhFIX was performed by ELISA and chromogenic assays. The concentration of total rhFIX was 500 ng/106 cells in 293T cell line and 803 ng/106 cells in SK-Hep-1 cell line. The biological activity of FIX secreted by 293T and SK-Hep-1 was 0,047 UI/106 cells and 0,186 UI/106 cells, respectively. In order to evaluate the active rhFIX production profile over time, we conducted a monitoring of 180 days, which was noted that the SK-Hep-1 cell line ceased FIX expression, while 293T cells maintained the expression during this period. rhFIX was characterized by western blot analysis confirming the presence of a expected 57 kDa immunereactive band. The 293T and SK-Hep-1 cell lines showed 7.67 and 17 integrated vector copies/cell, respectively. Considering the importance of the ?-carboxylation process, we performed a gene expression analysis of genes involved in this process, such as VKORC1, ?-carboxylase and calumenin, in cell lines. The results showed high ratios among the genes VKORC1 and calumenin and among VKORC1 and ?-carboxylase in both cell lines. The cell growth kinetics was performed by a 7-day period, showed significant differences between SK-Hep-1 transduced cells and non-transduced cells, whereas 293T cells showed no difference in cell growth. Enrichment of culture medium with Ca +2 and Mg +2 ions was tested to evaluate its influence on the expression of active FIX. 293T cells showed better performance in 0.5 mmol/L Ca+2 and 1.0 mmol/L Mg +2 concentrations and SK-Hep-1 cells in culture medium control. Our data indicate that transduced SK-Hep-1 cells are the best producer of functional rhFIX, and comparisons between these two cell lines are important in characterizing the behavior of genetically modified cell lines focused on the heterologous expression of recombinant proteins and opens new avenues for future studies aimed at improving the production of this type of protein.

Page generated in 0.0424 seconds