• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Création automatique d'un dictionnaire des régimes des verbes du français

Hassert, Naïma 06 1900 (has links)
Les dictionnaires de valence sont utiles dans plusieurs tâches en traitement automatique des langues. Or, les dictionnaires de qualité de ce type sont créés au moins en partie manuellement; ils nécessitent donc beaucoup de ressources et sont difficiles à mettre à jour. De plus, plusieurs de ces ressources ne prennent pas en compte les différents sens des lemmes, qui sont pourtant importants puisque les arguments sélectionnés ont tendance à varier selon le sens du verbe. Dans ce mémoire, nous créons automatiquement un dictionnaire de valence des verbes du français qui tient compte de la polysémie. Nous extrayons 20 000 exemples de phrases pour chacun des 2 000 verbes les plus fréquents du franc¸ais. Nous obtenons ensuite les plongements lexicaux de ces verbes en contexte à l’aide d’un modèle de langue monolingue et de deux modèles de langue multilingues. Puis, nous utilisons des algorithmes de regroupement pour induire les différents sens de ces verbes. Enfin, nous analysons automatiquement les phrases à l’aide de différents analyseurs syntaxiques afin de trouver leurs arguments. Nous déterminons que la combinaison du modèle de langue français CamemBERT et d’un algorithme de regroupement agglomératif offre les meilleurs résultats dans la tâche d’induction de sens (58,19% de F1 B3), et que pour l’analyse syntaxique, Stanza est l’outil qui a les meilleures performances (83,29% de F1). En filtrant les cadres syntaxiques obtenus à l’aide d’une estimation de la vraisemblance maximale, une méthode statistique très simple qui permet de trouver les paramètres les plus vraisemblables d’un modèle de probabilité qui explique nos données, nous construisons un dictionnaire de valence qui se passe presque complètement d’intervention humaine. Notre procédé est ici utilisé pour le français, mais peut être utilisé pour n’importe quelle autre langue pour laquelle il existe suffisamment de données écrites. / Valency dictionaries are useful for many tasks in automatic language processing. However, quality dictionaries of this type are created at least in part manually; they are therefore resource-intensive and difficult to update. In addition, many of these resources do not take into account the different meanings of lemmas, which are important because the arguments selected tend to vary according to the meaning of the verb. In this thesis, we automatically create a French verb valency dictionary that takes polysemy into account. We extract 20 000 example sentences for each of the 2 000 most frequent French verbs. We then obtain the lexical embeddings of these verbs in context using a monolingual and two multilingual language models. Then, we use clustering algorithms to induce the different meanings of these verbs. Finally, we automatically parse the sentences using different parsers to find their arguments. We determine that the combination of the French language model CamemBERT and an agglomerative clustering algorithm offers the best results in the sense induction task (58.19% of F1 B3), and that for syntactic parsing, Stanza is the tool with the best performance (83.29% of F1). By filtering the syntactic frames obtained using maximum likelihood estimation, a very simple statistical method for finding the most likely parameters of a probability model that explains our data, we build a valency dictionary that almost completely dispenses with human intervention. Our procedure is used here for French, but can be used for any other language for which sufficient written data exists.
2

Méthode et outils pour la création et l'évaluation automatiques de structures de bases lexicales multilingues (symétriques) à lexies et axies

Teeraparbseree, Aree 27 September 2005 (has links) (PDF)
Cette thèse aborde le problème de la structuration de bases lexicales multilingues (BDLM) en lexies et axies, à partir de ressources existantes. Ce travail est motivé par l'inadéquation des techniques existantes utilisées isolément, pour la structuration de BDLM.<br />Pour résoudre ce problème, la stratégie proposée est de composer des techniques existantes de désambiguïsation pour structurer semi-automatiquement des bases lexicales multilingues à lexies et acceptions interlingues. De plus, cette thèse propose une catégorisation des critères d'évaluation de la qualité des BDLM, ainsi que les mesures correspondantes.<br />Cette stratégie a été implémentée dans Jeminie, un système logiciel adaptable qui permet d'implémenter à la fois des méthodes de structuration de BDLM et des mesures de qualité, sous la forme de modules logiciels réutilisables.<br />Des compositions arbitraires de ces modules peuvent être définies par un lexicologue dans un langage de haut niveau d'abstraction, ce qui permet d'adapter facilement la structuration et l'évaluation de qualité en fonction des objectifs du lexicologue et des ressources disponibles sans nécessiter de connaissances en programmation.<br />L'intérêt de cette approche a été validé expérimentalement : la qualité des BDLM obtenues est meilleure par combinaison de techniques qu'avec chaque technique antérieure utilisée seule.

Page generated in 0.131 seconds